Intra-Prediction in Daala

Nathan Egge

Daala Code Party
1 October 2013
How Daala is Different

- Multiple Block Sizes
 - 4x4, 8x8, 16x16 (32x32?)
- Lapped Transforms
 - No need for adaptive loop-filter
- Frequency Domain Intra-Prediction
 - Exploit compact frequency representation
- Pyramid Vector Quantization (PVQ)
- Chroma From Luma
Time Domain Intra-Prediction

Pros:
- Uses image data from neighboring blocks
 - Only need to remember 1 pixel border
- Parameterizable for any angle θ
- Predicts difficult to code features well
 - edges are extended
- Efficient implementation (no multiplies)

Cons:
- Blocks L, UL, U, UR must be decoded
- Poor prediction in textured areas
Time Domain Intra-Prediction

The intra-prediction modes for 4x4 blocks in WebM (VP8).
Lapped Transforms

Diagram showing the process of applying a prefiltre to input blocks, transforming them with DCT and DCT^{-1} operations, and then outputting the transformed blocks.
Decoding an Intra Frame

Neighboring blocks:

- Decoded Image
- Predicted
- Unpredicted
- Currently Predicting
- Needs Post-filter
- Prediction Support
Freq. Domain Intra-Prediction

\[
X = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots
\end{bmatrix}, \quad Y = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots
\end{bmatrix}
\]

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix}^T \begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
X^TX & Y^TX \\
X^TY & Y^TY
\end{bmatrix}
\]

\[
C = X^TX \\
D = X^TY \\
E = Y^TX \\
F = Y^TY
\]

Online update:

\[
C = X^TX \\
D = X^TY \\
E = Y^TX \\
F = Y^TY
\]

Normalize:

\[
C' = S_x C S_x \\
D' = S_x D S_y \\
\beta_1' = C'^{-1} D'
\]

Model Fitting:

\[
\beta_1 = S_x \beta_1' S_x^{-1} \\
\beta_0 = \bar{Y} - X \beta_1 \\
y = \beta_0 + \beta_1 x
\]

Least Squares:

\[
\beta_1' = C'^{-1} D'
\]

Predict:

\[
y = \beta_0 + \beta_1 x
\]
K-Means Training

Classify Image Blocks (initially use VP8 modes)
Fit Model (linear prediction, least squares)
For $k = 1$ to N
 Reclassify Image Blocks (use Daala modes)
 Fit Model
Done
Demo

How good is a predictor?

- Coding Gain (Cg) measures how well energy is compacted into a few coefficients:

\[
C_g = 10 \log_{10} \frac{\sigma_x^2}{\left(\prod_{i=0}^{N-1} \sigma_{y_i}^2 \|h_i\|^2 \right)^{1/N}}
\]

- Prediction Gain (Pg) is the improvement in coding gain due to prediction.
Non-Sparse Results

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>VP8 Cg Ref</th>
<th>VP8 Cg Res</th>
<th>VP8 Pg</th>
<th>Daala Cg Ref</th>
<th>Daala Cg Res</th>
<th>Daala Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>subset1</td>
<td>4x8</td>
<td>11.4386</td>
<td>14.2018</td>
<td>2.76327</td>
<td>12.3286</td>
<td>14.6232</td>
<td>2.29461</td>
</tr>
<tr>
<td>subset3</td>
<td>4x8</td>
<td>13.8511</td>
<td>16.7665</td>
<td>2.9154</td>
<td>14.96</td>
<td>17.1703</td>
<td>2.21032</td>
</tr>
<tr>
<td>subset1</td>
<td>8x16</td>
<td>12.4887</td>
<td>13.3316</td>
<td>0.84291</td>
<td>12.8817</td>
<td>13.8135</td>
<td>0.93176</td>
</tr>
<tr>
<td>subset3</td>
<td>8x16</td>
<td>15.1202</td>
<td>15.9894</td>
<td>0.8694</td>
<td>15.6468</td>
<td>16.3716</td>
<td>0.72476</td>
</tr>
<tr>
<td>subset1</td>
<td>16x32</td>
<td>12.9038</td>
<td>13.0725</td>
<td>0.16871</td>
<td>13.1332</td>
<td>13.5621</td>
<td>0.42895</td>
</tr>
<tr>
<td>subset3</td>
<td>16x32</td>
<td>15.587</td>
<td>15.7818</td>
<td>0.19483</td>
<td>15.8721</td>
<td>16.248</td>
<td>0.37593</td>
</tr>
</tbody>
</table>
K-Means with Sparsification

Classify Image Blocks (initially use VP8 modes)

Fit Model (linear prediction, least squares)

For \(k = 1 \) to \(N \)

 Reclassify Image Blocks (use Daala modes)

 If \(k > M \)

 Drop prediction coefficients (use prediction gain, \(P_g \))

 End

 Fit Model

Done
K-Means with Sparsification

Classify Image Blocks (initially use VP8 modes)

Fit Model (linear prediction, least squares)

For $k = 1$ to N

Reclassify Image Blocks (use Daala modes)

If $k > M$

Drop prediction coefficients (use prediction gain, P_g)

End

Fit Model

Done
K-Means with Sparsification

Classify Image Blocks (initially use VP8 modes)
Fit Model (linear prediction, least squares)

For \(k = 1 \) to \(N \)

Reclassify Image Blocks (use Daala modes)

If \(k > M \)

Drop prediction coefficients (use prediction gain, \(P_g \))

End

Fit Model

Done

Each image processed independently
Online update of covariance matrix

Compute \(\Delta P_g \) per drop coeff.
Incremental update of table
K-Means with Sparsification

Classify Image Blocks (initially use VP8 modes)

Fit Model (linear prediction, least squares)

For $k = 1$ to N

Reclassify Image Blocks (use Daala modes)

If $k > M$

Drop prediction coefficients (use prediction gain, P_g)

End

Fit Model

Done

Each image processed independently
Online update of covariance matrix

Linear model independent for each coefficient

Compute ΔP_g per drop coeff.
Incremental update of table
K-Means with Sparsification

Classify Image Blocks (initially use VP8 modes)

Fit Model (linear prediction, least squares)

For $k = 1$ to N

Reclassify Image Blocks (use Daala modes)

If $k > M$

Drop prediction coefficients (use prediction gain, Pg)

End

Fit Model

Done

Highly Parallelizable

Each image processed independently
Online update of covariance matrix

Linear model independent for each coefficient

Compute ΔPg per drop coeff.
Incremental update of table
Sparse Results

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>VP8 Cg Ref</th>
<th>VP8 Cg Res</th>
<th>VP8 Pg</th>
<th>Daala Cg Ref</th>
<th>Daala Cg Res</th>
<th>Daala Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>subset1</td>
<td>4x8</td>
<td>11.4386</td>
<td>14.2018</td>
<td>2.76327</td>
<td>12.3286</td>
<td>14.4887</td>
<td>2.16006</td>
</tr>
<tr>
<td>subset3</td>
<td>4x8</td>
<td>13.8511</td>
<td>16.7665</td>
<td>2.9154</td>
<td>14.96</td>
<td>17.0399</td>
<td>2.07994</td>
</tr>
<tr>
<td>subset1</td>
<td>8x16</td>
<td>12.4887</td>
<td>13.3316</td>
<td>0.84291</td>
<td>12.8817</td>
<td>13.6266</td>
<td>0.74487</td>
</tr>
<tr>
<td>subset3</td>
<td>8x16</td>
<td>15.1202</td>
<td>15.9894</td>
<td>0.8694</td>
<td>15.6468</td>
<td>16.2364</td>
<td>0.58957</td>
</tr>
<tr>
<td>subset1</td>
<td>16x32</td>
<td>12.9038</td>
<td>13.0725</td>
<td>0.16871</td>
<td>13.1332</td>
<td>13.2572</td>
<td>0.124</td>
</tr>
<tr>
<td>subset3</td>
<td>16x32</td>
<td>15.587</td>
<td>15.7818</td>
<td>0.19483</td>
<td>15.8721</td>
<td>15.9675</td>
<td>0.09541</td>
</tr>
</tbody>
</table>
Texture Predictors

- TrueMotion mode now predicts texture!
Ideas for larger block sizes

- Predict using HEVC modes
- Use TF to reduce dimensionality of training support
- Generate textured modes for initial classification
Questions?