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ABSTRACT
p-Domain Rate-Distortion Analysis and Rate Control
for Visual Coding and Communication

by
Zhihai He

Rate-distortion (R-D) analysis and rate control play a key role in video coding and
communication systems by providing the R-D optimized compression performance,
assuring the successful network transmission of the coded video data, and achieving
the best visual quality at the receiver. In the conventional R-D analysis, the bit rate
R and distortion D are considered as functions of the quantization parameter q. That
is to say, the source models are developed in the g-domain. These source models either
have very high computational complexity or suffer from relatively large estimation
and control error. In this dissertation, a new framework for R-D analysis, called p-
domain analysis, is developed, where R and D are studied as functions of p which is
the percentage of zeros among the quantized transform coefficients. We observe that in
the p-domain the R-D functions have unique properties which enable us to model and
estimate them accurately and robustly. First, we show that in any typical transform
coding systems the rate function in the p-domain, denoted by R(p), is a linear function.
Based on Shannon’s source coding theorem, we provide a theoretical justification for the
p-domain linear rate model. Based on this rate model, a unified rate control algorithm is
developed for all standard video coding systems, such as MPEG-2, H.263, and MPEG-4
video coding. Our extensive experimental results show that the proposed rate control
algorithm outperforms other algorithms reported in the literature by providing much
more accurate and robust rate control and buffer regulation. Within the framework of
p-domain analysis, a generic distortion model is also developed for transform coding of

images and videos. Based on this distortion model and the linear rate model described
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above, an optimum bit allocation scheme is developed in the p-domain. It is applied to
the MPEG-4 coding at the object level and to the H.263 coding at the macroblock level.
Experimental results are presented to show that the proposed optimum bit allocation
significantly improves the coded picture quality.

To estimate the R-D functions without context information, we develop a unified
source modeling framework in the p-domain by introducing the new concepts of char-
acteristic rate curves and rate curve decomposition. With this framework, the R-D
functions of the image/video encoder can be accurately estimated before quantiza-
tion and coding with very low complexity. Based on the estimated R-D functions, a
frame-level rate control algorithm is developed for video coding which outperforms the
macroblock-level standard TMNS rate control algorithm. In addition, an encoder-based
rate shape smoothing algorithm is developed to control the video encoder such that
the output bit stream has both a smoothed rate shape and a consistent picture quality.

This is highly desirable in practical video coding and communications.
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Chapter 1

Introduction

Recent advances in computing and communication technology stimulate the research
interest in digital techniques for recording and transmitting visual information. The
exponential growth in the amount of visual data to be stored, transferred, and pro-
cessed has created a huge need for data compression. Compression of visual data,
such as images and videos, can significantly improve the utilization efficiency of the
limited communication channel bandwidth or storage capacity. For example, in cable
TV applications [1], higher resolution TV programs can be delivered with the required
bandwidth if the program video data is compressed before transmission. In communica-
tions over the Internet, images and videos consume the most bandwidth. Here, efficient

data compression is necessary to reduce the impact and burden on the network traffic.

The demand for image and video compression has triggered the development of
several compression standards, such as JPEG [2, 3], JPEG-2000 [4, 5], MPEG-2 [6, 7],
H.263 [8, 9], and MPEG-4 [10]. The JPEG standard is essentially designed for the
compression of continuous-tone still images. It can also be used to encode video se-

quences, where it is often called motion-JPEG. In this case, it makes no use of the

1



temporal correlation between the neighboring frames. The MPEG-2 video compres-
sion standard aims to provide generic methods for coding moving pictures for such
applications as storing videos on video CD (VCD) and on digital versatile disk (DVD).
It has also become a popular compression tool for high definition TV (HDTV) and
digital video broadcasting (DVB) [11]. H.263 is mainly designed and widely used for
video conferencing [9]. This standard targets real-time video coding at very low bit
rates with low delay latency. The recently finalized JPEG-2000 image coding standard
is fundamentally different from the JPEG coding standard. Specifically, JPEG is based
on the blockwise discrete cosine transformation (DCT) [12] while JPEG-2000 employs
the discrete wavelet transform (DWT) and subband coding techniques [13, 14]. It pro-
vides significantly improved coding efficiency and greater functionality, such as rate

scalability, error resilience, and compression domain manipulation of regions of interest

(ROI) [5].

1.1 Problem Addressed

In both the compression standards and the algorithms reported in the literature [16, 18,
19], transform coding has become the dominant approach for image and video compres-
sion [15]. A generic transform coding system is depicted in Fig. 1.1. The transform,
either DWT or DCT, is applied to the input picture. Here, a picture can be either a
still image or a motion-compensated video frame. After quantization, the quantization
coefficients are converted into symbols according to some data representation scheme.
For example, zig-zag scan and run-level data representation are employed in JPEG and
MPEG coding [2, 6]. In embedded zero-tree wavelet (EZW) coding [16], all insignifi-
cant coefficients in a spatial orientation tree are represented by one zero-tree symbol.

After data representation, the output symbols are finally encoded by a Huffman, or
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arithmetic coder [17].

Many coding algorithms have been reported in the literature. Some are well known
and widely used, such as wavelet-based EZW, set partitioning in hierarchical trees
(SPIHT) [18] and stack-run [19] image coding, DCT-based JPEG image coding [2],
MPEG-2 [6], H.263 [9] and MPEG-4 [10] video coding. In this dissertation, we will
take these coding algorithms for samples to investigate the R-D behavior of transform

coding of images and videos. Hence, we refer to them as typical transform coding

systems.
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Figure 1.1: A generic transform coding system for images and videos.

In visual coding and communication, the two most important factors are the cod-
ing bit rate and picture quality. The coding bit rate, denoted by R, determines the
channel bandwidth required to transfer the coded visual data. One direct and widely
used measure for the picture quality is the mean square error between the coded im-
age/video and the original one. The reconstruction error introduced by compression,
often referred as distortion, is denoted by D. In typical transform coding, both R and
D are controlled by the quantization parameter of the quantizer, denoted by g. The
major issue here is how to determine the value of ¢ to achieve the target coding bit rate,

or picture quality. To do this, we need to analyze and estimate the R-D behavior of



the image/video encoder; this behavior is characterized by its rate-quantization (R-Q)
and distortion-quantization (D-Q) functions, denoted by R(q) and D(q), respectively
[20, 21]. In this dissertation, they are collectively called R-D functions or curves. Based
on the R-D functions, as shown in Fig. 1.1, the quantization parameter g can be readily
determined to achieve the target bit rate Rp or picture quality Dr [22, 23]. Therefore,
the major issue here becomes this: how to analyze and estimate the R-D functions for

the image/video encoder.

Analysis and estimation of the R-D functions have potential applications in visual
coding and communication. First, with estimated R-D functions we can adjust the
quantization setting of the encoder and control the output bit rate or picture qual-
ity according to the channel condition, the storage capacity, or the user’s requirement
[23, 24, 25, 26]. Second, based on the estimated R-D functions, optimum bit allocation
as well as other R-D optimization procedures can be performed to improve the effi-
ciency of the coding algorithm and, consequently, improve the image quality or video

presentation quality [27, 28, 29, 30].

1.2 Related Works

In the classic R-D analysis [20, 21], the coding bit rate is approximated by the entropy
of the quantized coefficients. However, in transform coding of images and videos,
especially at very low bit rates, there is a large mismatch between the theoretical
entropy and the actual coding bit rate. Fig. 1.2 compares the theoretical entropy and
the actual coding bit rate for images “Lena” and “Peppers” coded by JPEG. We can
see that the relative error between them is very large. This is because the theoretical
entropy formulation does not take the efficient JPEG coding algorithm into account.

Since it is difficult to develop a close-form expression to model directly the coding
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algorithms such as EZW, SPIHT, JPEG, or MPEG [38], the empirical approach is often

employed in the R-D models and rate control algorithms reported in the literature.

Many R-D estimation and control algorithms have been developed within the con-
text of video coding. Some of them have been adopted as international standards; typ-
ical of these are the MPEG-2 Test Model Version 5 (TM5) rate control algorithm [32],
the H.263 Test Model Near-term Version 8 (TMN8) algorithm [33], and the MPEG-4
Verification Model Version 8 (VMS8) algorithm [34, 35]. Since they are widely used
in practical coding applications and regarded as the state-of-the-art rate control algo-
rithms, we will provide a brief review of them in Chapter 2. Throughout this disserta-
tion we will also use them for performance comparisons with the proposed algorithms.
Besides these standard rate control algorithms, many other algorithms have been pro-
posed to target different applications. A parametric R-D model has been proposed by
Tao et al. [36] for frame-level MPEG video coding. An approach based on a normal-
ized parametric R-D model [37] has been developed for H.263-compatible video codecs.
The authors claim that the proposed model offers an efficient approach that requires
less memory to approximate the rate and distortion characteristics for all quantization

parameters.

Among the bits-quantization models used in these R-D analysis and control algo-
rithms, some are based on the modified version of the classical R-D functions which lead
to logarithmic expressions [22, 23, 36, 39]. Mathematical expressions of other types,
such as power [24], spline [38], and polynomial [35, 40, 41], have also been employed. It
can be seen that these R-D models have complicated and highly nonlinear expressions.
In addition, for different coding algorithms, the R-D models and control algorithms are

quite different from each other.
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Figure 1.2: Comparison between the theoretical entropy and the actual coding bit rate for
Lena and Peppers coded by JPEG.

1.3 Objective

The objective of this dissertation to develop a unified framework for analysis, estimation
and control of the R-D behavior of typical transform coding systems. Towards this
objective, three major issues are addressed: unified rate modeling and control, optimum

bit allocation, and forward estimate of the R-D functions.

A. Unified Rate Modeling and Control

The rate models reported in the literature try to use some statistics of the input source
data, such as variance, to describe the input image or video data [20, 22, 23]. They also
try to analyze and model each step of the coding algorithms and formulate an explicit
expression of the coding bit rate. To achieve high coding performance, an efficient
coding algorithm must often employ a sophisticated data representation scheme as well
as an entropy coding scheme. To model these coding algorithms more accurately, these

rate models are getting more and more complex [22, 23, 39, 40]. However, with complex
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and highly nonlinear expressions, the estimation and rate control process becomes

increasingly complicated and even unstable with the image-dependent variation [38] .

As mentioned in the previous section, for different coding algorithms, the R-D
models and rate control algorithms reported in the literature are quite different. It
would be ideal to develop a simple, accurate, and unified rate model for any typical
transform coding systems. Based on this simple model, we could then develop a unified
rate control algorithm which could be applied to any typical transform coding system.
To this end, we need to uncover the common rules that govern the R-D behaviors of all
transform coding systems. Obviously, this will provide us with valuable insights into
the mechanism of transform coding. Practically, the simple and unified rate model and
control algorithm would enable us to control the image/video encoder accurately and

robustly with very low computational complexity and implementation cost.

B. Optimum Bit Allocation

Without accurate R-D model, the optimum bit allocation cannot be carried out [24].
In other words, if the model itself is not accurate, the bit allocation result cannot
be truly optimum. Therefore, to achieve the best performance in the optimum bit
allocation, we need to have an accurate and robust estimate of the R-D functions. In
issue A addressed above, we set the goal to develop an accurate and robust rate model.
Therefore, the only remaining issue is to develop a simple and accurate distortion model
and, consequently, to develop an optimum bit allocation scheme. Note that the rate
control algorithm discussed in issue A is mainly designed to achieve the target coding
bit rate. When coupled with the optimum bit allocation scheme, its functionality is

further extended.

C. Forward R-D Estimation
In video coding, the rate control algorithm often employs a parametric source model
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whose parameters can be adaptively estimated using the coding statistics of the previ-
ous video frames or macroblocks (MBs) [23, 24, 35]. However, for still image coding, the
typical coding algorithms (such as JPEG, EZW and Stack-Run) do not use the adap-
tive quantization scheme [2, 16, 19]. Therefore, the adaptive estimation of the model
parameters cannot be carried out. To estimate the R-D functions without context in-
formation, some operational approaches have been proposed in the literature [38, 24].
In these approaches, the image is often coded several times. The coding statistics are
then used to estimate the model parameters. Obviously, they have very high compu-
tational complexity. In addition, they do not provide us with insights into the R-D
behaviors of the coding systems [22]. Little has been done in the literature to develop
a general theoretical framework which can provide accurate and forward estimation of
the R-D functions for the image/video encoder. In this dissertation, we set the goal to
develop a unified source modeling framework which allows fast and accurate estimation
of the R-D functions for any typical transform coding systems. Here, the estimation
should be done before quantization and coding which implies it is forward. In addition,
the estimation process should be much less complex than the actual quantization and

coding process.

1.4 Approach

To accomplish the objective described in Section 1.3, we propose a novel methodology
for R-D analysis which is called p-domain analysis. Explained briefly here, it will be
discussed in detail in Chapter 2. In the R-D models presented in the literature, the rate
R and distortion D are treated as functions of the quantization parameter ¢, denoted
by R(q) and D(q), respectively. Studying rate and distortion as functions of ¢ is called

qg-domain analysis. In this way, we say that the conventional source models are based
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on the g-domain analysis.

It is observed that zeros play a key role in transform coding, especially at low bit
rates [42, 43]. All typical coding algorithms treat zeros in a special way and address
most of the effort to efficient coding of them. For example, in JPEG and MPEG coding,
run length representation and a special symbol of end-of-block (EOB) are employed to
code the zeros [2, 6]. In H.263 video coding, a special binary flag named “LAST” is
introduced to signal that all the remaining coefficients in a zig-zag order are zeros [9].
In EZW, a zero-tree symbol is introduced to code all of the zeros in a spatial orientation
tree [16]. After the transform coefficients are quantized with ¢ (as shown in Fig. 1.1),
let p be the percentage of zeros among the quantized coefficients. Note that in typical
transform coding systems p monotonically increases with g. (A detailed description of
this monotonical relationship between ¢ and p will be presented in Chapter 2.) Hence,
there is a one-to-one mapping between them. This implies that, mathematically R and
D are also functions of p, denoted by R(p) and D(p). Studying the rate and distortion
as functions of p is called p-domain analysis.

As we will see in subsequent chapters, in the p-domain the rate and distortion
functions have unique behaviors. After being mapped from the ¢-domain into the
p-domain, the picture-dependent variation and the highly nonlinear behaviors of the
R-D functions have been significantly removed. This enables us to analyze, model, and
estimate them accurately and robustly in the p-domain, and consequently to accomplish

the objective set in the previous section.

1.5 Summary of Contributions
The main accomplishments of this dissertation are as follows:

e Development of a new methodology for R-D analysis, called p-domain analysis. It
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serves an alternative to the traditional ¢-domain analysis. We demonstrate that,
after mapping from the ¢g-domain to the p-domain, the image-dependent varia-
tion and highly nonlinear behaviors of the R-D functions have been significantly

removed.

Development of a linear rate model in the p-domain. Based on our extensive
simulation results, we show that it is a unified rate model for any typical trans-
form coding system. With Shannon’s source coding theorem [20, 21], we give a
theoretical proof for the linear rate model. Also, we have shown that the model
parameter which is the slope of the linear rate function is directly related to the

image content.

Development of a unified rate control algorithm for all typical video coding sys-
tems, such as MPEG-2, H.263, and MPEG-4 video coding. The proposed algo-
rithm has very low computational complexity and implementation cost. When
compared to other rate control algorithms reported in the literature, our rate con-
trol algorithm provides much more accurate and robust rate control and buffer
regulation. In addition, the improved picture quality is due to its accurate rate

model and robust selection of the quantization parameter.

Development of a distortion model and an optimum bit allocation scheme in the
p-domain. The proposed bit allocation scheme is applied to efficiently distribute
the bit budget among different video objects, which leads to a scalable rate control
algorithm for MPEG-4 video coding. Coupled with macroblock classification, the
bit allocation scheme is also applied to H.263 video coding to improve the coded

picture quality.

Development of a novel p-domain source modeling framework for transform cod-

ing of images and videos. It allows us to estimate the R-D functions before
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quantization and coding with very low complexity. The relative estimation error
is less than 5%. Based on the estimated R-D functions, the output bit rate or
picture quality of the still image encoder is accurately controlled. A frame-level
rate control algorithm is also proposed for video coding. In addition, with the
forward estimation of the R-D functions, a rate shape smoothing algorithm is
developed. This smoothing algorithm allows the encoder to produce a bit stream

that has both a smoothed rate shape and a consistent picture quality.

1.6 Dissertation Outline

The dissertation is organized as follows:

Chapter 2 summarizes the typical transform coding systems employed in image /video
coding as well as some state-of-the-art source modeling and rate control algorithms.
These coding systems are to be extensively used in the subsequent chapters. The exist-
ing rate control algorithms are referred to and compared with the algorithms developed
in this dissertation. After the background review, the concept of the p-domain analy-
sis is formally introduced and further explained. Its implementation details are then
discussed.

Chapter 3 shows that, for any typical transform coding system, the rate curve in
the p-domain is approximately linear based on our extensive simulation results. A
theoretical justification for the linear rate model is provided. The physical meaning of
the model parameter, which is the slope of the linear function, is also discussed.

Chapter 4 presents a unified rate control algorithm for MPEG-2, H.263, and MPEG-
4 video coding. Complexity analysis is provided to show that the proposed algorithm
has very low computational complexity. The implementation details are discussed.

Extensive experimental results and comparisons with other rate control algorithms are
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provided.

Chapter 5 introduces a distortion model in the p-domain. Based on this distortion
model and the linear rate model developed in Chapter 3, an optimum bit allocation
scheme in the p-domain is developed. The proposed bit allocation scheme further
extends the capability of the rate control algorithm presented in Chapter 4. It is
applied to MPEG-4 object-based video coding and H.263 coding to improve the coded
video quality.

Chapter 6 presents a unified source modeling framework for all typical transform
coding systems. The linear rate model and distortion model, presented respectively
in Chapters 3 and 5, both have model parameters which can be adaptively estimated
in video coding. To explicitly estimate the R-D functions before quantization and
coding for transform coding (especially for still images coding), a novel p-domain source
modeling framework is introduced in this chapter. It is based on the new concepts
of characteristic rate curves and rate curve decomposition. With the estimated R-D
functions, the output bit rate of the image encoder can be accurately controlled. For
video coding, a frame-level rate control algorithm is proposed. Another application
of the estimated R-D functions is encoder-based rate shape smoothing. A smoothing
algorithm is developed to control the encoder such that the output bit stream has both
a smoothed rate shape and a consistent picture quality.

Chapter 7 summarizes the studies presented in this dissertation. Concluding re-

marks are provided, and future directions are discussed.
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Chapter 2

Transform Coding and p-Domain

R-D Analysis

Transform coding has become a dominant approach for image and video compression.
Many efficient transform coding algorithms have been proposed in the literature, such
as wavelet-based EZW, SPIHT and stack-run image coding, DCT-based JPEG coding,
MPEG-2, H.263, and MPEG-4 video coding. In this dissertation, these coding systems
are referred to as typical transform coding systems. To control the R-D behavior of
the image/video encoder, many rate control algorithms have been developed. Some
have been adopted as international standards, such as MPEG-2 TM5, H.263 TMNS,
and MPEG-4 VMS rate control algorithms. In this chapter, following a brief overview
of the typical transform coding systems and the standard rate control algorithms, the
p-domain R-D analysis is formally introduced and explained in detail. Its software

implementation is also discussed.
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2.1 Typical Transform Coding Systems

According to the type of the input source data (either images or videos), and the type
of transform employed in the coding scheme, the typical transform coding systems can
be categorized into the three groups: wavelet-based image coding, DCT-based image
coding, and DCT-based video coding. In the following, we give a brief review of these

coding systems.

2.1.1 Wavelet-Based Image Coding

EZW, SPIHT and stack-run are three examples of the wavelet-based image coding
systems considered in our investigation. DW'T is employed in these systems because
of its superior performance in energy compaction [50, 51]. After multiple-level dyadic
subband decomposition, the wavelet coefficients are uniformly quantized. Note that,
although SPIHT and EZW are progressive coding algorithms, they actually employ
an implicit uniform quantization scheme. In other words, we can also apply the EZW
and SPIHT data representation schemes to the quantized wavelet coefficients after the
uniform quantization.

To efficiently code the quantization coefficients, EZW explores the correlation among
the coefficients across different scales along a certain direction. During the coding pro-
cess, the magnitudes of the wavelet coefficients are compared with a threshold 7', which
is reduced by half in the next coding pass. A coefficient is termed significant if its mag-
nitude is larger than T'. Otherwise, it is insignificant. If a coefficient is insignificant and
all of its descendents are also insignificant, they are jointly represented by one sym-
bol called zero-tree root (ZTR). The introduction of the ZTR symbol greatly improves
the coding efficiency [16, 44]. In SPTHT, the coding efficiency is further enhanced by
a sophisticated set partitioning algorithm [18]. However, both are based on the con-

cept of efficient prediction of the insignificance information of the wavelet coefficients
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[18, 45]. The outputs of the EZW and SPIHT algorithms are further compressed by

an arithmetic encoder.

In the stack-run coding proposed in [19], the non-zero coefficients and the run length
of zeros are represented by symbols from a quaternary intermediate alphabet. After
wavelet transform and uniform quantization, the wavelet coefficients are rearranged into
a 1-D array according to a raster scan order. Each non-zero coefficient is represented
in a binary form with symbols {‘0’, ‘1’}. For differentiation, each run length number of
zeros is represented in binary form with symbols {‘~’, ‘+’} instead of {‘0’, ‘1’}. After
the binary representation, the output symbol stream is further compressed by a first-
order adaptive arithmetic encoder. Despite its very low addressing and implementation
complexity, this method performs better than EZW and is competitive with SPTHT.
But, its coding performance will degrade at relatively high bit rates, especially when

applied to some images with a lot of detail, such as “Barbara” [19].

2.1.2 DCT-Based Image Coding

The DCT-based JPEG image coding have been used successfully in various image
coding applications, such as Web publishing, medical imaging, image transmission,
and digital cameras. The input picture is first partitioned into 8x8 blocks and each
block is coded separately. After DCT, the coefficients are quantized by a perceptual
quantization scheme. A detailed description of the JPEG quantization scheme is given
in Section 2.4. The 64 quantized DCT coefficients are rearranged into a 1-D array in
a zig-zag scan order. Each non-zero coefficient is jointly encoded with its preceding
zeros according to a precomputed Huffman table. The zeros at the end of the block are
represented by the “EOB” symbol [2]. JPEG is a general-purpose compression standard

that has relatively low computational complexity and a low memory requirement.
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2.1.3 DCT-Based Video Coding

So far, the most popular coding algorithms for video sequences with successful ap-
plications are based on motion compensation (MC) and DCT. MPEG-2, H.263, and
MPEG-4 are the three major international standards for video coding. In a video se-
quence, two major types of correlation are explored by the coding algorithm. The first
is the temporal correlation among the neighboring video frames. This is explored by
motion estimation and compensation [6, 8]. The other type of correlation is the spatial
correlation which is explored by the DCT. After motion compensation and DCT, in
MPEG-2 the DCT coeflicients are coded in a way similar to the coding method in
JPEG. In H.263, the coding efficiency is significantly improved by replacing the EOB
symbol in JPEG with a binary flag and a 3-D variable length coding (VLC) scheme
[8, 9]. MPEG-4 video coding introduces the concept of video object. Each video
frame is segmented into several video objects. Each object is then coded separately,
as in H.263 [10, 46, 47]. For detailed treatment of these video coding standards, see

(6, 9, 10].

2.2 Standard Rate Control Algorithms

In video coding, rate control is employed to control the output bit rate of the video
encoder according to the network condition and to improve the video presentation
quality [23, 35]. As mentioned in Chapter 1, the key task in rate control and R-D
optimization is to analyze and model the R-D behavior of the image/video encoder.
In the following, we provide a brief review of three well-known rate control algorithms
which have been adopted as international standards and are widely used in practical
applications. Performance of these algorithms will be compared to our algorithms

proposed in the subsequent chapters.
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2.2.1 TMS5 Rate Control Algorithm

The TMb5 rate control algorithm is designed for bit rate control in MPEG-2 video cod-
ing. In the MPEG-2 coding syntax, the input video sequence is segmented into groups
of pictures (GOPs). The first frame of each GOP is intracoded and called I-frame.
The rest are either prediction-coded frames (P-frames) or bidirectionally interpolated
frames (B-frames) [6]. The TMS5 rate control algorithm consists of two major steps. In
the first step, the target bit rate for each video frame inside the GOP is obtained by a
frame-level bit allocation scheme. In the second step, the quantization parameter for
each macroblock is determined from the buffer status and the spatial activity of the
macroblocks. The whole rate control algorithm is based on the following assumptions

[32, 48]:
1. The distortion D increases linearly with the quantization parameter q.

2. To maintain a consistent video presentation quality, the quantization parameters

for I, P, and B frames, denoted as qj, qp, qp, are related by

q1 qp qB
A _ 2 _ 25 2.1
1.0 kp kg’ (2.1)

where kp and kp are constants. By default, they are set to be 1.0 and 1.4,

respectively.

3. The coding bit rate R is inversely proportional to the distortion D. In other

words,

R - D = constant. (2.2)

It can be seen that extremely simplified R-D models are employed in the TM5

algorithm. Therefore, it cannot achieve accurate and robust rate control [48].
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2.2.2 VMS8 Rate Control Algorithm

In video coding, the coding statistics of previous frames provides valuable information
for estimating the R-D behavior of the current frame, since the characteristics of the
neighboring frames are very close to each other when the picture activity is low. The
VMBS [34] rate control algorithm designed for MPEG-4 video coding is based on this

observation. It employs the following assumptions in its R-D analysis [34, 49]:

1. Neighboring video frames of the same type are very similar to each other, and

have the same rate and distortion curves.

2. The rate curve R(q) of each video frame is approximated by a quadratic formula,
R(q) = a1 x ¢ ' +aa x g% (2.3)

After a video frame is encoded, the average quantization parameter and the total
coding bit rate are known. Such coding statistics of a number of previous frames
are then used to estimate the model parameters a; and as for the current frame.
Once the model parameters are obtained by linear regression, the rate model

given by Eq. (2.3) can be applied for rate control.

Due to the first assumption, the VM8 rate control algorithm often suffers from
severe performance degradation at scene changes, because this assumption actually
no longer holds at scene changes. Besides this, the VM8 algorithm also suffers from
relatively large control error due to the limited accuracy and robustness of its rate

model given by Eq. (2.3) [23].

2.2.3 TMNS8 Rate Control Algorithm

The TMNS rate control algorithm operates at the macroblock level. The coding statis-

tics of previous macroblocks are utilized to update the model parameter for the current
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macroblock. The TMNS algorithm is based on the following logarithmic R-Q model,

1 202 : a? 1
slogy(2e° %), if %G > o
2 2 2 ) 2 2¢?
R(q) = 2 @ (2.4)
e _o- if % 1
In2 ¢2> 2 = 2e

which is a modified version of the classical R-D formula [20, 21]. Compared to the
VMBS rate control algorithm, the TMNS algorithm can meet the target bit rate much
more accurately, and maintain a much steadier buffer level [23]. However, in the TMN8
algorithm, there is no regulation on the dynamic range of the quantization parameter
of each macroblock. In addition, because of the limited accuracy of its rate model, the
algorithm also suffers from relatively large control error, especially at scene changes in
active videos at low coding bit rates.

The TMNS rate control algorithm is originally designed for the P-frames in H.263
video coding. For I-frames, the algorithm employs very rough rate and distortion
models [23]. However, in practical video coding applications, to improve the error
robustness or allow flexible playback, frequent selection of the intra coding mode is

needed. Therefore, the TMNS algorithm has limited practical applications.

2.3 p-Domain Analysis

All of the rate control algorithms described in the previous section, as well as other
algorithms reported in the literature [22, 24, 36, 37, 38, 39, 48], study the R-D functions
in the ¢g-domain. To improve the estimate accuracy, the expression for the coding bit
rate is getting more and more complex. In this dissertation, we develop a novel frame-
work for R-D analysis which provides a totally new viewpoint of the source modeling
and rate control problem.

It is well known that zeros play a very important role in transform coding, especially

at low coding bit rates. The state-of-the-art coding algorithms (such as EZW, SPTHT,
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JPEG, MPEG, and H.263), put most of their efforts on the efficient coding of zeros. As
mentioned in Chapter 1, the percentage of zeros among the quantized transform coef-
ficients, denoted by p, has a substantial effect on the R-D behavior of the image/video
encoder. Also, there is a one-to-one mapping between ¢ and p. Therefore, we can map
the R-D functions in the ¢g-domain R(q) and D(q) into the p-domain and denote them
as R(p) and D(p). As we will see in the subsequent chapters, in the p-domain, the R-D

functions have unique properties.

2.3.1 Typical Quantization Schemes

To map the R-D functions between the ¢g-domain and the p-domain, we first need to
obtain the one-to-one mapping between ¢ and p. Note that this mapping is determined
by the quantization scheme. In the following, we briefly review the quantization schemes
employed by the typical transform coding systems before discussing the computation

of the mapping between ¢ and p.

Quantization in Wavelet Image Coding

In the typical wavelet-based image coding systems, uniform threshold quantization
(UTQ) is often used. In this case, the quantization parameter g refers to the UTQ
stepsize. Let A be the UTQ dead zone threshold. In general, A is proportional to q.

For any transform coefficient z, its UTQ output index is given by

0 if |z| <A;
I[z] =UTQ[g, As z] = ¢ [22A] if 2> +A,; (2.5)

q
|28 if < —A.
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H.263 Quantization Scheme

The quantization scheme employed by H.263 video coding is similar to UTQ. To be
more specific, the quantization index of z in the H.263 style quantization scheme is

given by

Round(§) if z is a DC coefficient in an intra-MB;
Ilz] = § UTQ(2q,2q; z) if  is an AC coefficient in an intra-MB; (2.6)

UTQ(2q,2.5q; ) if x is a coefficient in an inter-MB.

Note that the range of the unquantized DC coefficient is 0 to 2040, which implies the
range of its differential value is 2040 to 2040. In H.263 coding, it is quantized by a

uniform quantizer with fixed step size 8, as shown in Eq. (2.6).

JPEG Quantization Scheme

In JPEG still image coding, a perceptual quantization scheme is employed. Each of the
64 DCT coefficients is quantized by a different uniform quantizer (UQ). The actual step
sizes for the coefficients in the luminance component are associated with a quantization

matrix, denoted by [wb(i,j)]lgiﬂ‘gg, where

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
L 14 17 22 29 51 87 80 62
[wy (i, 5)] = : (2.7)
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

L72 92 95 98 112 100 103 99
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Let (7, j) be the DCT coefficient located at (7, ) inside a luminance block. Its quan-

tization output is given by

l

I[z(i,j)] = Round lM] , (2.8)
q - wy (i, 5)

where the quantization parameter g functions as a scaling factor which controls the
coding bit rate and the picture quality. If z(i, j) is from a chrominance block, w (i, §)

in Eq. (2.8) is then replaced by the chrominance quantization matrix w9(i,j) where

17 18 24 47 99 99 99 99 W
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99J

MPEG Quantization Scheme

In MPEG-2 coding, the JPEG-style perceptual quantization scheme is employed. The

quantization matrixes for intracoded and intercoded macroblocks, respectively denoted
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by w9, (4,7) and w}, (i, j), are given in the following,

(8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
. 22 22 26 27 29 34 37 40
[wh (4, 5)] = : (2.10)
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
2 27 29 34 38 46 56 69

L27 29 35 38 46 56 69 83

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
.o 16 16 16 16 16 16 16 16
[whs (i, 5)] = : (2.11)
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

Unlike JPEG quantization, in the same macroblock, both the luminance and chromi-
nance component use the same quantization matrix. In MPEG-2 coding, the quanti-

zation index of the DCT coefficient z(i,7) is given by,

Round(g) if z is a DC coeflicient in an intra-MB;
I[z(i,7)] = Round 16“"7(11)]} if 2 is an AC coefficient in an intra-MB; (2.12)

Round M if z is a coefficient in a non-intra MB.
2-qwy, (4,5)

In MPEG-4 standard, both the H.263 style and the MPEG-2 style quantization are

adopted. The user needs to configure the encoder to choose the quantization scheme.
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It can be seen that all the quantization schemes listed in the above are very close to

the uniform threshold quantization.

2.3.2 The Mapping Between ¢ and p

The one-to-one mapping between ¢ and p can be directly computed from the distribu-
tion information of the transform coefficients. This is because in all typical transform
coding systems each transform coefficient is quantized separately. In the following, we
describe in detail how to compute the one-to-one mapping between g and p for different

coding systems.

Wavelet Image Coding

The wavelet-based image coding schemes such as EZW and stack-run (SR) employ the
uniform threshold quantization scheme given by Eq. (2.5). Let the distribution of the
wavelet coefficients be D(z). Here, we assume D(z) is a positive continuous function.
After quantization, the percentage of zeros among the quantized transform coefficients
is given by

A
oa) =7 [ D@ (2.13)

where M is the image size.

H.263 Coding

The H.263 quantization scheme is given by Eq. (2.6). Let Dg(z) and Di(z) be the
distributions of the DCT coefficients in the intracoded and intercoded macroblocks,
respectively. Note that in general the DC coefficients from the intracoded macroblocks
will not be quantized to zeros because of their relatively large values. Therefore, for

any quantization parameter ¢, the corresponding percentage of zeros p can be obtained
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as follows:

1 [+2 1

p(q) = 3 ), Do(z) dzx + M/—2,5q Dy (z) dz, (2.14)

where M is the number of coefficients in the current video frame. Note that in the
H.263 codec [53], the DCT coefficients are rounded to integers. Therefore, Dy(z) and

Di(x) are actually histograms of the DCT coefficients, and Eq. (2.14) becomes

1 1
p=— Y Do(z)+— > D). (2.15)
M M
|z|<2q |z|<2.5¢q

JPEG and MPEG Coding

Perceptual quantization is employed in the JPEG image coding, and in MPEG-2 and
MPEG-4 video coding. Detailed descriptions are given in Eqs. (2.8) and (2.12). After
DCT, we first divide each DCT coefficient by its associated perceptual weight, then
generate the distribution of these scaled DCT coefficients. After scaling, the perceptual
quantization becomes uniform, as we can see from Egs. (2.8) and (2.12). Therefore,
Egs. (2.13) and (2.15) can be also used to compute the value of p from ¢ for JPEG

and MPEG coding algorithms, respectively.

2.3.3 Implementation

From the distribution of the transform coefficients, for any given quantization param-
eter ¢ we can compute the corresponding p. In software implementation, we can store
the one-to-one mapping between ¢ and p in a look-up table. For example, in H.263 and
MPEG video coding, the possible values of ¢ are 1, 2, - - -, 31. So, the look-up table
has at most 31 entries. Using this look-up table, we can easily map the R-D functions

between the g-domain and the p-domain.
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2.4 Summary

In this chapter, following a brief description of typical transform coding systems and the
standard approaches for rate control, we introduced the methodology of p-domain R-D
analysis. For different quantization schemes in different coding systems, we have shown
that the mapping between g and p can be computed directly from the distribution of
the transform coefficients. Based on this mapping, we map the R-D functions from
the ¢g-domain into the p-domain. As we observe in the subsequent chapters, the R-D

functions have unique properties in the p-domain.
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Chapter 3

Linear Rate Model

In the previous two chapters, we observed that, in typical transform coding systems,
there is a one-to-one mapping between the quantization parameter ¢ and the percentage
of zeros p. Using this mapping, we can transform the R-D functions from the g-domain
into the p-domain, or vice versa. In this chapter, based on our extensive experimental
results, we first show that R(p) is a linear function for different image/video coding
systems and different types of source data. Based on Shannon’s source coding theorem,
we then provide a theoretical justification for the linearity of the rate function. Finally,
the physical background of the model parameter, which is the slope of the linear rate

function, is discussed.

3.1 Experimental Studies

As mentioned in Section 1.1, the typical transform coding systems included in our
studies are EZW, SPTHT, stack-run, JPEG, MPEG-2, H.263, and MPEG-4. They can

be categorized into three major groups: wavelet-based image coding (EZW, SPIHT, and
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stack-run), DCT based image coding (JPEG), and DCT-based video coding (MPEG-2,
H.263, and MPEG-4). The types of source data involved in these coding algorithms
are still image; motion compensated picture, such as P- or B- picture; video object
plane; base layer; enhancement layer; and so on. In this section, based on our extensive
simulation results, we show that, for different coding systems and different types of

source data, the actual coding bit rate R is a linear function of p.

3.1.1 Wavelet-Based Image Coding

We randomly select 24 sample images which have a wide range of R-D characteristics.
The sample images are shown in Fig. 3.1. Each sample image is first decomposed by a
5-level dyadic scheme with the 9-7 wavelet [13, 52]. The decomposed image is uniformly
quantized and then coded by the EZW algorithm [16]. We encode each sample image
at a series of quantization parameters {¢g; |1 < i < L}. For each ¢;, let the R; be
the corresponding coding bit rate. During the quantization process, we also count the
number of zeros produced by the quantizer and then compute the percentage of zeros
pi. In this way, for each sample image, we have a series of points {(p;, R;)|1 <7 < L} on
the rate curve R(p) which are plotted in Fig. 3.2. It can be seen that R(p) is almost a
straight line. In addition, this line passes through the point [1.0, 0.0]. This is because,
when p is 1.0, all of the coefficients are quantized to zeros and the corresponding coding
bit rate R should become zero. Therefore, in the p-domain, the rate function has the

following expression,
R(p) =0-(1-p), (3.1)

where 0 is a constant. We have also performed the above experiment over many other
images coded by other wavelet-based coding algorithms, such as SPIHT and stack-run
coding. The above linear rate model has been found to hold.

For comparison, in Fig. 3.3, we plot the rate curve in the g-domain for each sample
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image shown in Fig. 3.1. For different images the patterns of R(q) are quite different
from each other. In addition, for each sample image, R(q) has a very complex nonlinear
behavior. This image-dependent variation and nonlinear behavior make it very hard
to develop an accurate and robust source model in the ¢-domain. This is the reason
that the source models in the literature are getting ever more complex although their
estimation accuracy remains low. However, in the p-domain, the rate curve is a linear
function which is extremely simple. This is one of the advantages of the proposed
p-domain R-D analysis.

In Fig. 3.4, we plot the mapping p(q) for each sample image. For different images,
p(q) are quite different from each other. In addition, p(q) has a highly nonlinear
behavior. Based on p(q), each rate function in the ¢-domain is mapped into the p-
domain. We observe that the image-dependent variation and the highly nonlinear
behavior of the rate function in the g-domain are largely removed by the mapping from
q to p. From another point of view, this also implies that the coding bit rate of an
image/video encoder is much more closely and directly related to p than to gq.

Image-1 Image-2 Image-3 Image-4 Image-5

Image-13

S

Image—-20

Figure 3.1: Sample images selected for our simulations.
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Figure 3.2: The linear relationship between the percentage of zeros p and the coding bit rate
R in wavelet image coding with EZW. The z-axis represents p while the y-axis represents R.
All the plots have the same coordinate system.
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Figure 3.3: The plot of the rate curve R(q) in the g-domain for each sample image coded
by EZW. The z-axis represents ¢ while the y-axis represents R. All the plots have the same
coordinate system.
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Figure 3.4: The plot of the mapping function p(q) for each sample image shown in Fig. 3.1.
The z-axis represents ¢ while the y-axis represents p. All the plots have the same coordinate
system.

3.1.2 DCT-Based Image Coding

From Section 2.1 we know the JPEG coding is quite different from the wavelet-based
image coding algorithms described above. However, as we can see in the following
experiment, in the p-domain they are governed by the same rate model. In Fig. 3.5,
we plot the rate function in the p-domain R(p) for each sample image shown in Fig.
3.1 coded by JPEG. Note that the linear rate model holds for the JPEG coding; when
p is 1.0, all the coefficients are quantized to zeros, the corresponding coding bit rate is
% bpp instead of zero. This is because JPEG employs the symbol “EOB” to represent
a run of zeros at the end of each block in the zig-zag scan order. This special symbol
takes 4 bits when it is Huffman coded. So the actual rate curve is shifted upwards by

644 bpp from the point [1.0, 0.0]. A generalized p-domain rate model is give by

R(p) =0-(1—p)+ Rp, (3.2)
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where R}, is a constant which does not depend on the quantization parameter. For

JPEG coding, R = 7=.

3.1.3 DCT-Based Video Coding

As discussed in Section 2.1, DCT-based video coding employs the MC-DCT coding
scheme which is different from the coding of still images. The common types of source
data involved in video coding are I-frame, motion compensated error picture (such as P-
or B- picture), base layer and enhancement layer. In addition, in most cases, especially
in active videos, a video frame has both intracoded and intercoded macroblocks. In the
object-based MPEG-4 video coding, each frame contains one or more video objects.
Although, complex coding procedures are employed in typical video coding systems,
and various types of source data are involved, their rate functions in the p-domain
have unique and simple behaviors. In other words, as we can see from the experiments
described in the following, the linear rate model also holds in these typical video coding

systems.

With the H.263 video codec [53], we encode the test video sequence at a series
of quantization stepsizes {¢;|1 < i < L}. Let R; be the coding bit rate excluding the
motion vectors (MVs) and the header information bits. That is to say, we consider only
the coding rate related to the DCT coefficients. It should be noted that the number
of bits for MVs and header information is already determined before quantization. In
Fig. 3.6, we plot {(p;, R;)} for several frames from the “Foreman” video sequence. It

can be seen that, in the p-domain, R is approximately a linear function of p.

To examine this linear relationship more systematically, we study the correlation
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Figure 3.5: The linear relationship between the percentage of zeros p and the coding bit rate

R in JPEG image coding. The z-axis represents p while the y-axis represents R. All the plots
have the same coordinate system.

coefficient between p; and R;, denoted by C(p;, R;). By definition we have

L
; piRi

RZ') = 1= .
I 7

\/Z p? - \/Z R?
i=1 i=1

C(pi, R;) becomes %1 if and only if there is an exact linear relationship between p; and

Clpi, (3.3)

R;. In Fig. 3.7, we plot the values of —C(p;, R;) for each frame of the “Carphone”,
“Salesman”, “Coastguard” and “Akiyo” video sequences coded by MPEG-2. In Fig.
3.8, we plot the values of —C(p;, R;) for each frame of “News”, “Akiyo” and each VOP
in the two objects of “News” coded by MPEG-4. It should be noted that in MPEG-4
coding R; does not include the bits for the shape information. From Figs. 3.7 and 3.8,
we can seen that —C(p, R) is always larger than 0.99. For most of the frames or VOPs,
it is even larger than 0.995 which is extremely close to 1. This implies that the linear
rate model given in Eq. (3.1) also holds for the DCT-based video coding systems.

These extensive simulation results with various coding systems and a wide range of
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image/video data have shown that the rate function is linear in the p-domain.
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Figure 3.6: The linear relationship between the percentage of zeros p and the coding bit rate
R in H.263 video coding. The test frames are from the Foreman QCIF video.
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Figure 3.7: The correlation coefficient (inverse) of each frame between the coding bit rate R
and p in MPEG-2 video coding.
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Figure 3.8: The correlation coefficient (inverse) of each frame between the coding bit rate R
and p in MPEG-4 object-based video coding.

3.2 Theoretical Justification

In this section, based on Shannon’s source coding theorem [20, 21], we provide a the-
oretical justification for the p-domain linear rate model in Eq. (3.1). The literature
[54, 56, 57] indicates that transform coefficients have a generalized Gaussian distribu-

tion which is given by

Poo() = [% eIl (3.4)

where
_ 1 [EBm) 1<v<2 3.5
n(v,o) =o [W , <v<2 (3.5)

Here o is the standard deviation of the transform coefficients, and v is a model param-
eter which controls the shape of the distribution. For example, when v = 2.0, pgqe(z) is

a Gaussian distribution given by

py(z) = e 2(3)?, (3.6)



When v = 1.0, pgy(x) becomes a Laplacian distribution given by
A
pz) = e Al (3.7)

In DCT-based image/video coding, Lam and Goodman [55] have mathematically de-
rived that the DCT coefficients have a Laplacian distribution. In the following, before
studying the generalized Gaussian source, we first consider its two special cases: the

Laplacian and the Gaussian sources.

3.2.1 Laplacian Source

For the Laplacian source, let us define the distortion measure as D(z,%) = |z — Z|
where z is the input symbol and % is the output symbol of the quantizer. According
to Shannon’s source coding theorem [21, 58, 59], if a distortion D is allowable, the
minimum number of bits needed to represent a symbol from a Laplacian source is
given by

R(D) = logs (%) . (3.8)
First consider a uniform quantizer. For a given quantization stepsize ¢, the correspond-

ing distortion is

0.5¢ X r(i40.5)q ]
D(q) = 2/ pi(z)zde + 2 Z / p(z)|x — iq| dz. (3.9)
0 i=1 7/ (i—0.5)q
With Eq. (3.7), we have
D(q) = l[ 1+ L/\q@ — e 05A _ 60‘5/\‘1) —e M ] (3.10)
A 1 —e

Note that the percentage of zeros is given by

0.5q
p = / %e_)‘mdm (3.11)
—0.5q

- 1— 670.5)\q
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After changing the independent variable from ¢ to p, Eq. (3.10) becomes

D(p) = % : %. (3.12)
With Egs. (3.8) and (3.12), we have
R(p) = log, [%] . (3.13)

In our extensive simulations we observe that, in transform coding of images and videos
at low bit rates, such as 1.5 bpp or less, the corresponding percentage of zeros p is
mostly larger than 0.8, as we can see from Figs. 3.2 and 3.5. Hence, 1 — p is mostly
smaller than 0.2 which is close to zero. For 1 — p close to zero, a Taylor expansion of
Eq. (3.13) yields

R(p) =2-logye- (1 —p)+O([1 - p]*), (3.14)

which is approximately a linear function.

The above mathematical formulation is for the uniform quantizer with a dead zone
threshold 0.5¢. In image and video coding, a uniform threshold quantizer with a larger
dead zone is often used to produce more quantized zeros in order to reduce the coding
bit rate. Suppose the dead zone threshold is A = (0.5 + b)q where b is some positive

constant. The corresponding quantization distortion is given by,

A 0 r(i+1)g+A 1
D(q) = 2/ pl(m)xdx—i-QZ/ p(@)e— G+ 2)g—Alde.  (3.15)
0 5 igra 2
In this case, the percentage of zeros is given by
AN
p = / Ee_/\‘x‘ dx (3.16)
-A
= 1—e 2

With Egs. (3.15), (3.17) and (3.8), the expression of R(p) becomes

1 1+ 2
=lo
&2 142¢ -2+ (1—a)(1+2%)zlnz’

R(p) (3.17)
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where
0.5

- =1—p. 3.18
o=grvy © p (3.18)

We plot R(p) for b = 0.0, 0.5 and 0.75 in Fig. 3.9. It can be seen that the plots are
all very close to being straight lines. This theoretically justifies the linear rate model

given by Eq. (3.1) for the Laplacian source.
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p

Figure 3.9: Plots of the function R(p) given by Eq. (3.17) for different dead zone threshold
values.

3.2.2 Gaussian Source

Next we consider the Gaussian source which is another special case of the generalized
Gaussian source. For the Gaussian distribution we need to employ the square error
distortion

D(z,%) = (z — 2)% (3.19)

According to Shannon’s source coding theorem [58, 59], if a square distortion D given

by Eq. (3.19) is allowed, the minimum number of bits needed to represent a symbol
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from a Gaussian source is given by
R(D) = B (3.20)

For a uniform threshold quantizer with a step size g and dead zone A, the corresponding
distortion is given by

o0

A
D(q) = 2/0 py(z)a? de +2

(i+1)g+A 1
/ pg(x)[z — (i + §)q — A]2 dzx. (3.21)
i=0

ig+A

It might be very difficult to derive an explicit expression of R(p) in the same way as
for the Laplacian distribution. Instead, we evaluate R(p) numerically and plot it for
different dead zone thresholds in Fig. 3.10. It can be seen that the rate function in the

p-domain for a Gaussian source is also also very close to being a linear function.
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p

Figure 3.10: Plots of the function R(p) for a Gaussian source at different dead zone threshold
values.
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3.2.3 Generalized Gaussian Distribution

Laplacian and Gaussian sources are two special cases of the generalized Gaussian source.
For these two types of sources coupled with appropriate distortion measures, based on
the source coding theorem, we have the explicit expressions for their R-D functions as
given in Eqgs. (3.8) and (3.20). However, for a generalized Gaussian distribution, due
to the complex expression of itself, it is difficult to do so. Instead, we can obtain the
lower and upper bounds of its R-D function [59]. To be more specific, for a generalized

2

Gaussian source X with mean zero and variance o“, we have

0.2

1 1
h(X) — 3 logy(2me)D < R(D) < 3 log, o (3.22)
Here h(X) is the differential entropy of X which is given by
W) = = [ poa(@) 108 gy (@) da (3.23)

The distortion D in Eq. (3.22) refers to the square error distortion. Following the
same procedure as for the Gaussian source, we numerically evaluate the lower and
upper bounds of the rate function in the p-domain and plot them in Fig. 3.11. Here
the variance of the source is set to be 02 = 100 and the distribution control parameter
is set to be v = 1.5. It can be seen that the lower and the upper bounds of the
rate function are very close to each other. In addition, both are approximately linear
functions. Since the actual rate function should lie between them, it should therefore
also be approximately a linear function. This justifies the linear rate model given in

Eq. (3.1) for a generalized Gaussian source.

3.3 Physical Background of the Model Parameter

The only parameter of the proposed source model in Eq. (3.1) is the slope 0. Fig. 3.12

shows the value of 6 for each sample image listed in Fig. 3.1. As we expect, different
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Figure 3.11: Plots of the lower and upper bounds of the p-domain rate function R(p) for a
generalized Gaussian source with o = 10 and v = 1.5.

images have different values of ; the variation of @ is relatively large. From Eq. (3.1)
we know 0 must be related to some characteristics of the input source data which have
a determining effect on the coding bit rate. In this section, we try to find out what
are the characteristics and their physical background. To this end, we sort all of these
sample images according to the value of . In Fig. 3.13, the sorted images are listed in
a raster scan order with @ increasing from the smallest to the largest. It can be seen
that the images in the first half have more high-frequency texture than those in the
second half. The images in the second half are smoother and more structured. This
suggests us that the value of 6 is closely related to the amount of texture presented in
the corresponding image.

In the frequency domain, an image with more texture normally has a relatively
larger amount of middle- or high-frequency components [60]. In other words, the energy
is more distributed to the middle- or high- frequency subbands. For smoother and more

structured images with less texture, the energy is more concentrated in the lower-
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Figure 3.12: Plot of the slope € of the linear rate function for each sample image shown in
Fig. 3.1.

frequency subbands. Consider the wavelet transform as an example. After a 5-level
dyadic subband decomposition, there is a total of 16 subbands, denoted by {S;| 1 <
i <16}. Let 07 be the variance of the wavelet coefficients in S;. Let o and o7 be the
arithmetic mean and geometric mean of {o?|1 < i < 16}, respectively. We define the

energy compaction measure {2 as

1
16

0_2 16 ) 16 )
Q== = Zai/ (H0i> . (3.24)
i=1 =1

2
9

Q

Obviously, larger € corresponds to more compacted energy and fewer texture compo-
nents. Actually, €2 is often used as a feature variable for texture analysis [60]. In Fig.
3.14, we plot the pair of [€2, 0] for each sample image listed in Fig. 3.1. We can see
that there is a strong linear correlation between €2 and 6. The correlation coefficient
between them is 0.845, which is very high. This strong correlation explains the physical

meaning of 6, which is the only parameter of the proposed source model.
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Figure 3.13: The samples images sorted by 6. The images are listed in the raster scan order.
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Figure 3.14: The linear correlation between the energy compaction measure 2 and the slope
0.
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3.4 Summary

In this chapter, we have shown both experimentally and theoretically that in the p-
domain the rate function is linear. This linear rate model is a unified model for any
typical transform coding systems and all types of source data. Compared to other rate
models proposed in the literature, it is much simpler. However, it is very accurate
because it is derived directly from the actual coding results. We have also discussed
the physical meaning of its only model parameter 6. In the next chapter, based on this
linear rate model, a unified rate control algorithm for MPEG-2, H.263, and MPEG-4

video coding will be developed.
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Chapter 4

p-Domain Rate Control for Video

Coding

In video coding and transmission, the coding behavior of the video encoder has to be
controlled to satisfy the network transmission condition, to meet the video presentation
quality requirement, or both. To this end, we need to have sufficient knowledge about
the R-D behavior of the video encoder which is characterized by its R-D functions. In
Chapter 3, we developed a linear rate model in the p-domain. Based on this simple but
very accurate rate model, we will develop a unified rate control algorithm for MPEG-
2, H.263, and MPEG-4 video coding. In this chapter, following a brief background
review of the rate control framework for video coding and transmission, we present
the p-domain rate control algorithm. Extensive simulation results are provided to
demonstrate the superior performance of the proposed rate control algorithm. Its

computational complexity and implementation cost are also discussed.
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4.1 Rate Control for Video Coding and Transmission

Recent advances in high-speed network, high-capacity storage, and computing technol-
ogy have stimulated the wide use of digital video in multimedia communication. In
the digital video technology, the raw video data is first compressed, then stored on
the local storage devices or transmitted through the network channel to the end user.
Compression and transmission of the video data over the network is subject to the
channel bandwidth as well as to certain time and delay constraints. This is because
each coded video frame has to be transmitted to the decoder before it is scheduled to

be decoded and displayed.

4.1.1 Video Applications

According to the way that the video data is compressed, transmitted, decoded, and

displayed, the video applications can be categorized into the following three types.

Type A. Storage video for local usage
The raw video data is compressed and stored on a local storage device, such as
hard drive or compact disk (CD). During the process of playback, the coded video
data is transmitted through the internal data bus whose data transmission speed
is sufficiently large to meet the decoding and displaying requirement. This type
of video application includes the storage video on CD and on digital versatile
disk (DVD). The coded video data stored in a remote computer can also be
downloaded as a whole through the network onto the local temporary folder
before being decoded and displayed. This kind of video application should also
be regarded as stored video for local usage because no network transmission is

involved during the decoding process.

Type B. Real-time transmission of stored video
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The video data is compressed and stored to be accessed and used by a remote user
through the network. To display the video, the user does not need to download
the whole video which often takes a unacceptable period of time. In contrast, after
a certain amount of video data has been buffered in the user’s local computer, the
decoding and displaying process immediately starts. One important requirement
in this kind of real-time video transmission is that each video frame must arrive
at the user’s end before it is scheduled to be displayed. Otherwise, the video
player has to pause the decoding process and wait for this video frame, which is
often called “rebuffering”. Frequent interrupts of the playing process due to data
rebuffering significantly degrade the video presentation quality. This type of video
application includes video-on-demand [81] and broadcast of existing programs,

such as news, movies, and sports coverage.

Type C. Real-time transmission of live video

4.1.2

The video data is captured, compressed, and transmitted through the communi-
cation channel to the end user in real-time. This type of video application includes
live TV or video broadcasts. Obviously, they require even more efficient video
coding and transmission schemes than Types A and B. A even more challenging
case is the interactive application, such as videophone, video conferencing, and

interactive classroom which require a relatively small end-to-end delay.

Functionality of Rate Control

In general, the coded video data has a variable bit rate due to the scene activities. In

video

transmission as shown in Fig. 4.1, a buffer (called encoder buffer) is introduced

at the encoder to temporarily store the coded video data which cannot be transmitted

because of the mismatch between the encoder bit rate and the channel bandwidth.
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Figure 4.1: A generic video coding and transmission system.

Another buffer is used at the decoder side to temporarily store the video data which
cannot be decoded immediately because of the mismatch between the channel band-
width and the decoding speed. Practically, buffers are limited in size. This requires an
efficient rate control algorithm to regulate the coding behavior of the encoder to avoid

buffer overflow and underflow.

In general, rate control has two basic functions. The first is to control the out-
put bit rate of the video encoder according to the network condition. Its objective
is to maintain a successful transmission of the coded video data by adjusting the en-
coder setting. Accurate and robust rate control is requisite for Types B and C video
applications, especially for interactive video technologies, which require a very small
end-to-end delay and, consequently, small encoder and decoder buffers. Let the target
coding bit rate for the encoder be Ry, which is determined by buffer status and the
channel bandwidth. Let R be the actual coding bit rate. The control error is then

given by R — Rp. This amount of video data is accommodated by the encoder buffer.
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Small buffer size requires the rate control algorithm to accurately estimate the coding
behavior of the video encoder, adjust its quantization settings, and match R to Ry as
closely as possible.

The other function of rate control is to optimize the video presentation quality
given the constraint of storage capacity or channel bandwidth. This applies to all the
three types of video applications. Based on estimated R-D functions of the encoder,
the rate control algorithm can be employed to maximize the video quality by optimum

allocation of bits and accurate selection of the quantization parameters for the encoder.

4.2 p-Domain Rate Control Algorithms

A generic video encoder coupled with a rate controller is illustrated in Fig. 4.2. Based
on the encoder buffer level B, the channel bandwidth C' and the frame rate F', the

target bit rate Ry for the current video frame is determined as follows,

RT:%—B—FT-BT, (4.1)
where Br is the buffer size and 7 is the target buffer level. In buffer regulation, it
is necessary to keep a certain number of bits 7By inside the buffer to avoid possible
underflow [23]. By default, 7 is set to be 0.2. Note that Ry is the number of bits
for coding all the information of the current frame which includes the motion vectors,
header information, and the DCT coefficients. However, the motion vectors and header
information bits, denoted by Rjsy and Ry, are independent of quantization. They can

be determined before our rate control process begins. Let
Rc =Ry — Ryv — Ry. (4.2)

Obviously, R¢ is the target number of bits for coding the DCT coeflicients.
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Figure 4.2: A generic rate control framework for video coding and transmission.

Based on the estimated rate function of the video encoder, the rate control algorithm
can determine the quantization parameter to achieve the target bit rate Rc. In Chapter
3, in the p-domain, we developed a linear rate model given by Eq. (3.1). The simplicity
and accuracy of this model allow robust and precise rate control. The only parameter of
the rate model is 6. In this section, based on the adaptive estimation of 8 and adaptive
selection of the quantization parameter, two different p-domain rate control algorithms
are presented. Table 4.1 summarizes the notations to be used in the following algorithm

description.

4.2.1 Algorithm 1: Adaptive Estimation and Control

In this algorithm, a macroblock-level adaptive scheme is developed to estimate the value
of # and, in turn, to select the quantization parameter for each macroblock. According

to Eq. (3.1), the actual value of 6 is given by
0=——, (4.3)

where R and p are the actual coding bit rate and percentage of zeros of the current

frame. But, before encoding the frame, we have no information about R and p. How-
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Table 4.1: Description of notations.

M Picture size. For a QCIF picture, M = 176 - 144 - 1.5
= 38016.
N The number of macroblocks in one video frame. For a QCIF
frame, N = 99.
Ny, The number of macroblocks which have already been coded in
the current frame.
R, The number of bits used by the already coded macroblocks
in the current frame.
Pm The number of zeros produced by the already coded macroblocks
in the current frame.
Dy ™(x) | The distribution of the DCT coefficients in the intracoded macroblocks
which are not yet coded in the current frame.
D™ (1) | The distribution of the DCT coefficients in the intercoded macroblocks
which are not yet coded in the current frame.
QP The quantization parameter of the current macroblock.
Rarv | The total number of bits for coding the motion vectors
in the current frame.
Ry The total number of bits for coding the header information
in the current frame.
Rc The total number of bits for coding the DCT coeflicients
in the current frame.
RE The actual bit rate for coding the DCT coefficients in the
K-th video frame.
pK The percentage of zeros produced by the coded K-th frame
QK The average quantization parameter of the K-th frame
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ever, during the encoding process, we do know the values of R,, and p,, for the N,,

coded macroblocks in the current frame. Let

Ry,
Op = — - 4.4
™ Ny, - 384 — pm (44)

Here, “384” refers to the number of DCT coefficients in one macroblock. Obviously,
we have

0m — 0, when N, — N. (4.5)

Therefore, we use 6,, as an estimation of # and apply it to the current macroblock to
determine its quantization parameter as illustrated in Fig. 4.3.

With the adaptive estimation of 6, the rate control algorithm turns out to be simple
and straightforward. The quantization parameter for each macroblock is determined

in the following steps:

Step 1. Initialization. Before encoding the first macroblock of the current video frame,
set Ny, = Ry = pm = 0. Generate the distributions D)™ (z) and D™ () which
are defined in Table 4.1. Compute R based on Eq. (4.2). Set § = 7 which is its

average value in our extensive simulations.

Step 2. Determine the quantization parameter q. According Eq. (3.1), the number of
zeros to be produced by the quantization of the remaining macroblocks should

be
RC - Rm
79 .

Based on the p-¢ one-to-one mapping which is computed from DéVm (z) and

p=384-(N—Npy)— (4.6)

D;™(z), the corresponding quantization parameter ¢ is then determined. The
current macroblock is quantized with QP = ¢ and encoded by the video coding

algorithm.

Step 3. Update. Let py and Ry be the number of zeros and number of bits produced

by the current macroblock, respectively. Set py, = pm + po, Bm = Rpy + Ro, and
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Ny, = N, + 1. If N,, > 0.2 - R¢, update the value of 6 by 6,, which is given by
Eq. (4.4). At the same time, subtract the frequencies of the DCT coefficients in
the current macroblock from Dy ™ (x) if the current macroblock is an intracoded

macroblock, or from D™ (x) if it is an intercoded macroblock.

Step 4. Loop. Repeat steps 2 and 3 for the next macroblock until all of the mac-

roblocks in the current frame are encoded.

We can see that in this algorithm no information from the previous frames is utilized
during the rate control process of the current frame. In other words, the rate control
for each frame is totally independent from others. Therefore, it does not suffer from
any performance degradation at scene changes. When determining the quantization
parameter for each macroblock, the algorithm always divides the whole picture into
two parts: the coded macroblocks and the uncoded macroblocks, and then considers
the information from both parts. As we will see from the experimental results presented

in Section 4.3, this type of rate control mechanism is very robust.

- Coded macroblock I:I Current macroblock

[ ]

Figure 4.3: Adaptive estimation of § and macroblock-level adaptive quantization.



4.2.2 Algorithm 2: Rate Control Based On Quantization Parameter
Relaxation

Although the computational complexity of Algorithm 1 is already low when compared
to other rate control algorithms reported in the literature [32, 35, 23], its complexity can
be largely reduced further by the following quantization parameter relaxation method.
The complexity of Algorithms 1 and 2 will be analyzed in detail in Section 4.2.3. Our
second rate control algorithm is based on the following observation. After the previous
(K —1)-th frame is coded we know its rate slope #%~1. If we use %! as an estimation
of the rate slope of the current K-th frame, an estimation error is introduced. But
we can surpress this estimation error by the quantization parameter relaxation method
which is explained in the following.

As shown in Fig. 4.4, after the (K-1)-th frame is encoded, we already know RX~!

and p&~1, which are defined in Table 4.1. Its corresponding rate slope is then given
by,
RK—l
K—1 _
0 —_— m. (4.7)

If the K-th frame is very similiar to the (K-1)-th frame, its rate slope 8% should also
be very close to §X—1. If we use #% ! as the estimation of %, according to Eq. (3.1)

the percentage of zeros to be produced by the K-th frame is given by,

R R
K _ C C
=1=qm9r =1~ 3pgr=1" (4.8)

As discussed in Section 2.3.2, based on the distribution information of the DCT coefti-
cients in the current frame, the one-to-one mapping between the quantization parameter
and the percentage of zeros can be computed. Based on this mapping, the quantization
parameter corresponding to p® can be obtained. We denote it as Q.

However, in practical video coding, the scene activities, especially at scene changes,

cause these two neighboring frames to often have different R-D characteristics. In this
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Figure 4.4: Frame-level estimation of § with quantization parameter relaxation.

way, the actual rate slope 6% is different from %1, which implies that Eq. (4.8) is not
true. Therefore, the frame quantization parameter Q% obtained above cannot achieve
the target bit budget Rc. However, we observe that the desired frame quantization
parameter which can achieve R, should fall in the neighborhood of Q¥. Let Q =
{QF —2,QK —1,Q%,QF +1,QX + 2} be the five candidate quantization parameters
for each macroblock in the current K-th frame. Suppose we are now encoding the
(Np, + 1)-th macroblock. If R, < 0.2 - R¢, the quantization parameter of the current

macroblock QP is set to be Q%. Otherwise, we choose

( QK -2 : if6, €130, co);
QK -1 : if 6y, c[1.10K, 1.39%);

QP = QK if6, €[0.96K, 1.10K); (4.9)
QK +1 : if6,, €[0.70K, 0.90%);

| QX +2 & if6, €0, 0.765).

It can be seen that in this rate control algorithm the difference between the rate slopes
of two neighboring frames is compensated by the relaxation and adaptive selection of

the quantization parameters. When 6,,, which is the adaptive estimation of the true 6,
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is smaller than 0%, we know Q¥ is too small to achieve the target bit rate Rc. Hence,
we need to select a larger quantization parameter in its neighborhood. Otherwise,
we just select a smaller one. Based on the above frame-level estimation of the rate
slope and the quantization parameter relaxation scheme given by Eq. (4.9), we present

Algorithm 2 as follows.

Step 1. Initialization. Before encoding the video sequence, set # = 7 and K = 1.
Suppose that the current frame is the K-th frame. Before encoding the first
macroblock of the current frame, set N, = R,, = py, = 0. Compute Rc with

Eq. (4.2).

Step 2. Determine the frame quantization parameter QPX. Generate Dy(x) and
D;(x) which are the distributions of the DCT coefficients in the intracoded and
intercoded macroblocks in the current frame, respectively. Compute the one-to-
one mapping between the quantization parameter and the percentage of zeros
as discussed in Section 2.3.2. Compute p® with Eq. (4.8) and determine its

corresponding quantization parameter QP based on the one-to-one mapping.

Step 3. Macroblock-level adaptive quantization. Compute 6, with Eq. (4.4). Deter-
mine the quantization parameter () P for the current macroblock according to Eq.

(4.9).

Step 4. Update. Let po and Ry be the number of zeros and the number of bits
produced by the current macroblock, respectively. Set pp, = pm + po, BRm = R
+ Ry, and N,, = N, + 1.

Step 5. Macroblock loop. Repeat steps 2, 3, and 4 for the next macroblock until all
the macroblocks in the current frame are encoded. Compute 0% according to Eq.

4.7).
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Step 6. Frame loop. Repeat steps 2 to 5 for the next frame until all the frames in the

video sequence are encoded.

4.2.3 Performance Analysis of the Algorithms

We next analyze the computational complexity and implementation cost of Algorithms
1 and 2, and compare their running time with other rate control algorithms reported
in the literature [23, 32, 35].

In Algorithm 1, at the beginning of the rate control process, the distributions of
DCT coefficients in the current frame need to be generated. After each macroblock is
coded, the frequencies of its DCT coefficients need to be subtracted from D)™ (z) and
D{Vm (x) to obtain the updated distributions of the rest of the uncoded macroblocks.
It can be easily seen that the overall computational complexity is approximately twice
the complexity of the distribution generation. Note that the distribution generation
has low computational complexity and low implementation cost. Therefore, the overall
complexity of Algorithm 1 is low. In Algorithm 2, we need to generate the distributions
for the whole frame only at the beginning. This is the major computation in Algorithm
2 because, when determining the quantization parameter for each macroblock, we need
only two additions and one multiplication. Therefore, Algorithm 2 reduces the overall
complexity of Algorithm 1 by approximately half.

Next, we compare the running time of the proposed algorithms with other standard
rate control algorithms, such as the MPEG-2 TM5 and H.263 TMNS algorithms. Note
that the running time depends on the CPU speed and the configuration of the computer.
To circumvent this issue, we define the measure unit to be the average TM5 rate
control time in MPEG-2 coding of the “Foreman” QCIF sequence. The running time
simulation results are listed in Table 4.2.3. Here, p-RC-1 and p-RC-2 refer to the
proposed Algorithm 1 and Algorithm 2, respectively. We can see that the p-RC-1 is

faster than the TM5 and TMNS rate control algorithms, and p-RC-2 is about twice as
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Table 4.2: Ruuning time comparison between the proposed algorithms and other standard
rate control algorithms.

MPEG-2

Video TM5 | p-RC-1 | p-RC-2

Foreman 1.000 0.891 0.426

Coastguard | 1.125 0.829 0.469

Tabletennis | 1.021 0.974 0.486

H.263

Video TMNS8 | p-RC-1 | p-RC-2

News 1.405 0.992 0.493

Salesman 1.325 0.939 0.473

Akiyo 1.220 0.814 0.401

fast as p-RC-1.

4.3 Simulation Results

The proposed rate control algorithms do not depend on the specific coding algorithm.
Therefore, they can be applied to any typical video coding systems. In this section, we
present the rate control results for MPEG-2, H.263, and MPEG-4 video coding, and
compare their performance with other well-known rate control algorithms reported in

the literature [23, 32, 35].

4.3.1 MPEG-2 Coding

In MPEG-2, the video sequence is coded by the unit of GOP. Each GOP consists
of at least one intracoded picture (I-frame) and some intercoded pictures (P- and

B-frames). In general, the MPEG-2 rate control has two major steps. In the first
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step, the target bit rate for each video frame inside the GOP needs to be determined
by bit allocation. In the second step, the target bit rate is achieved by adjusting
the quantization parameter according to the source model. We employ the TM5 bit
allocation scheme [32] to determine the number of bits assigned to each frame in the
current GOP. ! For each frame, the proposed rate control algorithms are employed to
achieve the target bit rate. The test videos are “Foreman”, “Salesman”, “Tabeltennis”
and “Coastguard”. The target bit rate for each test is shown in Table 4.3. To measure
rate control performance, we define the relative control error as
R—-R

Eye= —T % 100%, (4.10)
Rr

where R and R are the actual and target coding bits of each video frame, respectively.
The relative control error for each frame in “Foreman” and “Tabletennis” is plotted in
Figs. 4.5 and 4.6, respectively. It can be seen that when compared to the TM5 rate
control algorithm the proposed algorithms yield a much smaller control error, which is
mostly less than 2%. The peak signal-to-noise ratio (PSNR) of each frame in “Foreman”
and “Tabletennis” is plotted in Figs. 4.7 and 4.8, respectively. It can be seen that with
the proposed rate control algorithms the picture quality is significantly improved. Also
note that in the above experiment p-RC-2 has almost the same performance as p-RC-1.
The picture quality improvement for the other two test videos is listed in Table 4.3.
A PSNR gain of 0.87 dB on average is achieved. For some video frames, the gain is
even up to 2 dB. The improved picture quality is due to our accurate source model and

robust rate control scheme.

In Chapter 5, we develop a distortion model which, when combined with the linear rate model,

leads to an optimum bit allocation scheme in the p-domain.
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Table 4.3: Rate control results for MPEG-2. p-RC-2 represents the proposed p-domain rate

control algorithm.

Video Foreman | Salesman | Tabletennis | Coastguard | Coastguard
Target Rate 288000 288000 288000 288000 1024000
Bit TM5 289024 289089 288208 288895 1024273
Rate | p-RC-2 || 288203 288170 288008 288169 1024152

Control | TM5 12.8% 4.9% 15.2% 6.5% 2.9%
Error | p-RC-2 0.9% 1.3% 0.7% 0.8% 0.3%
TM5 32.96 36.58 32.24 31.38 38.37
PSNR | p-RC-2 33.84 37.20 33.12 32.20 39.64
(dB) Gain 0.88 0.62 0.88 0.82 1.17
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Figure 4.5: The relative bit rate control error in percentage for each frame in Forman when
the proposed rate control algorithm and the TM5 algorithm are applied to the MPEG-2 coding.
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Figure 4.6: The relative bit rate control error in percentage for each frame in Tabletennis
when the proposed rate control algorithm and the TM5 algorithm are applied to the MPEG-2
coding.
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Figure 4.7: The PSNR of each frame in Forman when the proposed rate control algorithm
and the TM5 algorithm are applied to the MPEG-2 coding.
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Figure 4.8: The PSNR of each frame in Tabletennis when the proposed rate control algorithm
and the TM5 algorithm are applied to the MPEG-2 coding.

4.3.2 H.263 Coding

In real-time video coding with H.263, the time delay should be very small, which
imposes strict requirement on the rate control accuracy. In the following experiment,
we compare the proposed low-complexity p-RC-2 rate control algorithm with the TMNS8
algorithm [23] which is one of the best available rate control algorithms for video coding.
The configuration of each test is shown in Table 4.4. The frame rate is fixed at 10
frames/second (fps). We plot the number of bits in the buffer for each test in Fig. 4.9,
which shows that the proposed rate control algorithm maintains a steadier buffer level
than does the TMNS8 algorithm, especially at lower coding bit rates. The number of
bits produced by each frame is plotted in Fig. 4.10. With the proposed algorithm,
the output bit rate of the video encoder is well matched to the target bit rate or the
channel bandwidth. The average PSNR of the luminance components in each test is
listed in Table 4.4. The proposed algorithm achieves a slightly improved picture quality

because of its more robust rate control scheme.
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Table 4.4: Description of the rate control tests with the H.263 codec.
Test Video Target || PSNR PSNR

Name Name Rate TMNS8 | This work

fm48 Foreman | 48 kbps || 30.31 30.41

sm32 Salesman | 32 kbps || 30.92 30.71

nw24 News 24 kbps || 30.28 30.63

cg48 | Coastguard | 48 kbps || 28.43 28.55

4.3.3 MPEG-4 Coding

We use the MoMuSys MPEG-4 codec [61] with the H.263-type quantization scheme to
test the proposed rate control algorithm and the VMS algorithm. The two test videos
are “Carphone” and “News”. We treat the whole scene as one video object. The frame
rate is 10 fps. The target bit rate is 64 kbps. The number of bits produced by each
frame in “Carphone” and “News” are plotted in Figs. 4.11 and 4.12, respectively. With
the proposed algorithm, an almost constant bit rate is achieved. The relative control
error is less than 1%. However, in the rate control of VM8, the bit rate variation is
much larger.

The proposed rate control algorithm has also been tested using other target bit
rates and video sequences. The simulation results, along with the results presented in
the above, show that the proposed algorithm provides a much more robust and accurate

rate control than other algorithms reported in the literature.

4.4 Picture Quality Evaluation

In MPEG-2 TM5 and H.263 TMNS rate control algorithms, the quantization param-

eter QP is determined at the macroblock level. There is no restriction for its range.
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Figure 4.9: The number of bits in the buffer when the proposed algorithm (solid line) and the
TMNS rate control algorithm (dotted line) are appplied to the H.263 video coding.
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Figure 4.10: The number of bits produced by each encoded frame when the proposed algorithm
(solid line) and the TMNS rate control algorithm (dotted line) are applied to the H.263 video
coding.
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Figure 4.11: The number of bits produced by each encoded frame in Carphone when the
proposed algorithm (solid line) and the VMS rate control algorithm (dotted line) are applied
to the MPEG-4 coding.
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Figure 4.12: The number of bits produced by each encoded frame in News when the proposed

algorithm (solid line) and the VMS8 rate control algorithm (dotted line) are applied to the
MPEG-4 coding.
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However, in the proposed p-RC-2 algorithm, based on the distribution of the DCT co-
efficients, we first determine the mean quantization parameter Q¥ of the whole frame.

The quantization parameter QP of each macroblock is then chosen from its neighbor-

hood O.

Let QP,,q, be the maximum and Q) P,,;, be the minimum macroblock quantization
parameters in the current frame. The dynamic range of QP is then given by QPyqz —
QPyin. If the range is 0, then all the macroblocks in the current frame use the same
quantization parameter. In Fig. 4.13 we plot the dynamic range of QP for each frame
when the p-RC-2 algorithm and the TMS5 algorithm are applied in MPEG-2 coding
of the “Tabletennis” QCIF sequence. The dynamic range comparison results with the
TMNS rate control algorithm in H.263 coding of the Carphone sequence is depicted in
Fig. 4.14. Note that in this experiment, according to our experience, we have enlarged
the quantization parameter relaxation range where Q = {QK —2,Q% —1,Q%,QF +
1,Q% 4+ 2,Q% + 3}. This is because, in H.263 video coding, the coding bit rate is
normally low. Therefore, the corresponding quantization parameter is normally large,
especially at very low bit rates such as the 24 kbps rate in the above experiment. The
maximum range of the proposed algorithm is 6. However, in the TMNS rate control
algorithm, the range could be very large, as large as 29. Note that in standard video
coding, the maximum quantization parameter is 31. This means, in TMNS8, some
blocks in the current frame are quantized by an extremely small QP while others are
quantized by an extremely large Q) P. This implies a very large quality variation inside
each picture. Consequently, the overall picture quality degrades because of the lack of
uniformity. Fig. 4.15 shows the 111-th frame reconstructed by the H.263 encoder when
the TMNS algorithm and the p-RC-2 algorithm are applied. The proposed algorithm
yields a better picture quality. This improvement in picture quality is due to the

inherent difference between the two rate control algorithms. In the MPEG-2 TM5 or
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H.263 TMNS rate control algorithm (since the source model is not accurate enough),

the model parameters are empirically adjusted during the encoding process.
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Figure 4.13: The dynamic range of the quantization parameters in each frame of Tableten-
nis.qcif at 576 kbps when the proposed p-RC-2 algorithm (solid line) and the TM5 rate control
algorithm (dashed line) are applied to the MPEG-2 coding.

Let us consider the following example. Suppose the target number of bits for
the current frame is 4000 and the corresponding mean quantization parameter is 10.
When encoding the first several macroblocks, the TMNS estimates QP = 2 because its
source model is not so accurate. After some time, it suddenly realizes that there are
very few bits left for the remaining macroblocks. Then the TMNS8 adjusts its model
parameters and dramatically increases the values of QP. At the end part of the frame,
the maximum QP = 31 is employed to reduce the bits as much as possible. In this

way, the dynamic range of QP becomes very large.

Another disadvantage of the very large dynamic range of Q) P is that some important
information in the picture might be lost. For example, suppose that the region of

interest is at the bottom half of the picture. The TMNS rate control algorithm uses very
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Figure 4.14: The dynamic range of the quantization parameters in each frame of Carphone.qcif
at 24 kbps when the proposed p-RC-2 algorithm (solid line) and the TMNS rate control algo-
rithm (dotted line) are app lied to the H.263 coding.

Figure 4.15: The reconstructed 111th frame in Carphone.qcif when the TMNS algorithm (left)
and the proposed p-RC-2 algorithm (right) are applied to H.263 video coding. The channel
rate is 24 kbps.
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large QP to quantize this part. Its quality will be poor and the valuable information
will be lost. However, in the proposed rate control algorithm, since the quantization
parameter for each macroblock is restricted inside a small interval, a steady and uniform

picture quality is guaranteed.

4.5 Summary

Based on the linear p-domain rate model developed in Chapter 3, very simple rate
control algorithms were proposed. The proposed algorithms can be applied directly
to any typical video coding systems. Our simulation results show that, compared to
the standard rate control algorithms, the proposed rate control algorithms have lower
computational complexity and implementation cost. However, the rate control is much
more accurate and robust, especially in MPEG-2 video coding. The simplicity of the
linear rate model and the superior performance of the proposed rate control algorithms
have demonstrated the great advantage of our p-domain analysis. In the next Chapter,
we develop a distortion model in the p-domain. Furthermore, when combined with the
linear rate model in Chapter 3, an optimum bit allocation scheme is developed in the
p-domain. It is then applied to practical video coding to improve the rate control and

coding performance.
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Chapter 5

p-Domain Optimum Bit

Allocation

The ultimate objective in video coding and transmission is to provide the best video
quality at the receiver end, given the constraint of certain network conditions. Ob-
viously, maximizing the picture quality means the minimizing the distortion of the
reconstructed video. Given a bit budget, the best picture quality or minimum distor-
tion can be achieved by optimum bit allocation [27, 28, 29, 30].

In the previous two chapters, a linear rate model and unified rate control algorithms
have been developed in the p-domain for all standard video coding systems. We observe
that in the p-domain the rate function has a unqgiue behavior that enables us to develop
the accurate and robust rate control algorithms. This motivates us also to develop a
distortion model in the p-domain. Once both the rate model and the distortion model
are available, we can then develop an optimum bit allocation scheme in the p-domain,
which further extends the capability of the rate control algorithms proposed in Chapter
4.

This chapter is organized as follows: First, a generic distortion model for transform
coding is developed in the p-domain. Second, based on this distortion model and

the linear rate model in Chapter 3, a p-domain optimum bit allocation scheme is
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presented. Third, we apply this bit allocation scheme to MPEG-4 coding to distribute
the bit budget among different video objects. Finally, with a macroblock classification
scheme, we also apply it to H.263 video coding at the macroblock level to improve the
picture quality.

q — Domain p — Domain

Normalized distortion D

\ \ ) 0 . \ \ )
0 20 40 60 0.5 0.6 0.7 0.8 0.9 1
Stepsize q Percentage of zeros p

Figure 5.1: The distortion curves of each frame in Foreman.qcif in the g-domain (left) and the
p-domain (right).

5.1 p-Domain Distortion Model

It is much easier to model the distortion than the coding bit rate for two reasons. First,
in typical transform coding systems, all of the information loss occurs during the quan-
tization process of the transform coefficients. This implies that to model the distortion
we need to consider only the behavior of the quantizer. However, the coding bit rate
is affected by every component of the transform coding system: quantization, data
representation, and entropy coding. Furthermore, among these components quantiza-
tion is the simplest and easiest to model. The second reason for the difficulty in rate

modeling is that, in image/video coding, the transform coefficients are often grouped
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to be jointly coded as one symbol. For example, in EZW coding, all of the insignificant
coefficients in a spatial orientation tree are coded with one ZTR symbol. In JPEG and
MPEG coding, each non-zero coefficient is jointly coded with its preceding zeros using a
codedword from their Huffman tables. This type of vector-based coding scheme makes
it very difficult to directly model the coding algorithm and to estimate the final coding
bit rate. However, in distortion modeling, since each transform coefficient is quantized
independently, the distortion of the whole picture is just a summation of the distortion
at every pixel. This implies that the distortion formula can be explicitly derived from

the distribution of the transform coeflicients.

In the classical R-D analysis, the distortion D is considered to be a function of the
quantization parameter ¢, denoted by D(q). From the previous two chapters we know
that the rate function R(p) has a unique behavior in the p-domain. This motivates us
to also study the distortion function in the p-domain. Let D = D/o? be the normalized
distortion. In Fig. 5.1 we plot the normalized distortion function in the g-domain D(q)
and the function in the p-domain D(p) for each video frame of Foreman coded by H.263.
Two observations are made from these plots. First, in the g-domain, D(q) is defined
within an infinity range [0, +00). However, in the p-domain, D(p) is defined within a
finite range [0, 1]. Note that when p — 0, which means the quantization parameter
q is very small, we have D(p) — 0. When p — 1, which means the quantization
parameter q is very large, we have D(p) — 1. Second, in the g-domain, for different
video frames, the plots of D(q) are quite different from each other. However, in the p-
domain, for different video frames, the variation of D(p) is very small. This implies that
the distortion function has a more robust and regulated behavior in the p-domain than
in the ¢g-domain. We find that, for each video frame, D(p) can be well approximated

by

D(p) = a%e 200, (5.1)
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where « is a constant that normally ranges from 10 to 20.
Assume that the DCT coefficients have a Laplacian distribution [55]. For a uniform
threshold quantizer with a dead zone (0.5 + b) - ¢ where ¢ is the quantization stepsize,

from Section 3.2, we know that the corresponding distortion D(p) is given by

I+ =2n+(1—-a)(1+n%)nlnn

D) ML)

(5.2)

where a = 1/(1 + 2b) and n = 1 — p. Obviously, this distortion function is highly
nonlinear and complex. It will be very difficult to develop a close-form formula for
the optimum bit allocation based on this complex expression. However, we observe
that D(p) given by Eq. (5.2) can be approximated very closely by Eq. (5.1), which is
much simpler. Consequently, we employ Eq. (5.1) instead of Eq. (5.2) as our p-domain

distortion model.

5.2 Optimum Bit Allocation

Based on the distortion model developed in the previous section and the linear rate
model presented in Chapter 3, a p-domain optimum bit allocation scheme is developed
in this section. Before the formulation of our bit allocation scheme, we briefly review

some existing bit allocation schemes in the literature.

5.2.1 Bit Allocation in Review

In transform coding of images and videos, bit allocation is employed to distribute
the bits budget among different groups of transform coefficients to achieve the mini-
mum overall quantization distortion. The problem of optimum bit allocation was first
addressed by Huang and Schultheiss [62] where only an approximate solution to the
problem was provided. Further improvement has been suggested in [27, 63, 64] within
the context of source quantization and coding. The optimum bit allocation scheme can

be applied to various image coding algorithms to improve their coding performance,
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such as JPEG [65] and wavelet-based image coding [66, 67, 68]. In video coding,
bit allocation can be incorporated into the rate control algorithm to further extend
the capability of the control algorithm and to improve the video presentation quality
[23, 32, 41].

The optimum bit allocation is carried out based on the R-D functions of the encoder.
The R-D functions can be modeled theoretically and employed to derive the close-form
expression for the optimum bit allocation scheme as in [23, 27, 62, 63, 64]. As we have
observed in Section 1.1, the theoretical models in the conventional R-D analysis often
suffer from relatively large estimation error. As a result, the optimum bit allocation
based on these R-D models cannot be truly optimum [24]. For this reason, in practical
image/video coding more accurate operational R-D curves are employed to perform the
optimum bit allocation [38, 66, 67]. Since the generation of the operational R-D curves
often has very high computational complexity, this type of operational bit allocation
scheme does not work efficiently in practical video applications, especially in real-time
video coding and transmission. In this dissertation, we show that the R-D functions
have unique properties in the p-domain and develop simple and accurate models for the
R-D functions. Based on these models, we can then develop an optimum bit allocation

scheme in the p-domain.

5.2.2 p-Domain Bit Allocation

In transform coding of images and videos, we need to take two major steps to achieve
the best picture quality. The first step is the optimum bit allocation. Specifically, we
need to determine the number of bits assigned to each data source in such a way that
the overall distortion is minimized. Here, “source” is a generic term. In video coding,
it could be a frame, a video object, or a group of macroblocks inside one frame. In
the second step, we need to select the quantization parameter accurately to meet the

bit budget for each source, which is exactly the problem of rate control. In Chapter
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4 we solved this problem by developing a p-domain rate control scheme. So, the only
remaining issue is to develop a p-domain optimum bit allocation.

In the p-domain, the rate and distortion functions for each input source are given
by Egs. (3.1) and (5.1), respectively. Let {S;|1 < i < L} be the input sources. For

each S;, we have

Ri(p;) = 0;-(1—pi), (5.3)

Di(p;) = ole o=, (5.4)

The optimum bit allocation problem can then be formulated as follows,

L
min 2026—%(1 Pi) . N, (5.5)
i =
s.t. Zﬁ (1—p;)-N; = Ry, (5.6)

where N; is the size of S; and Ry is total number of bits available. With the Langrange
multiplier, the constrained minimization problem can be converted to the following
unconstrained problem,
L
mln 202 —ei(1=pi) Ni+>\-[20i-(1—pi)-Ni—RT]. (5.7)
i=1
By solving this minimization problem, we obtain the optimum number of bits for each

input source,

o} &N
Ri=&Niln 7+ ST en, ZgNm? (5.8)
? 3=1 Q24 Ve 2

where & = 6;/a;. According to Eq. (5.3), the corresponding percentage of zeros to be

produced is given by
B,
O;iN;

pi=1-— (5.9)

In the following, we apply this optimum bit allocation scheme to practical video coding.
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5.3 Scalable Rate Control for MPEG-4

The ISO MPEG-4 video coding supports content-based interactivity which allows the
access and manipulation of video objects in the compression domain [10]. To do this,
each video frame is segmented into several objects associated with some physical mean-
ing, such as foreground people and background scene, as illustrated in Fig. 5.2. Each
video object is then coded separately. The MPEG-4 output bit stream syntax also al-
lows the separate decoding and reconstruction of each video object. In this way, scene
editing, such as adding, deleting, or moving a video object can be performed directly
on the bit stream. With this type of content-based coded representation of video data,

the video information can used and presented much more flexibly.

Object 1

MPEGA
WORLD

MPEG4
WORLD

Object 2

Figure 5.2: Tllustration of the video objects segmentation in MPEG-4 coding.

In rate control for MPEG-4 coding, the available bit budget Rt for each video frame
can be determined from the channel bandwidth and the buffer status as described in
Section 4.2. The optimum bit allocation scheme developed in Section 5.2 can then be

employed to efficiently distribute these bits among the video objects to maximize the
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overall picture quality. Once the bits target R; for each video object is obtained, the
macroblock-level rate control algorithm p-RC-2, proposed in Chapter 4.2, can be then

employed to control the encoder to achieve the bits target R;.

5.3.1 Model Parameters

Note that, in the bit allocation scheme just described, there are two model parameters
0; and «; to be determined. In practical video coding, these two parameters of the
current object can be determined by the coding statistics of the same object in the
previous frame of the same type. To be more specific, after coding the k-th frame, we
already know the number of bits R; used for coding the object V O;, the percentage of
zeros p; produced by V O;, and the distortion D;. With Eqs. 5.3 and 5.4, the values of

0; and «; can be determined as follows,

R;
R 1
o= (.10
1 o;
i = In —. 11
a T~ nDi (5.11)

As depicted in Fig. 5.3, they are then used for the object VO; in the current (k+1)-
th video frame. Note that, after scene segmentation, each video object becomes more
homogeneous. The temporal variation of the model parameters is significantly reduced.
As a result, this type of frame-level estimation of the model parameters works quite
well in practice. Based on our experience, the initial values of 6; and «; are set to 7

and 12, respectively.

5.3.2 Experimental Results

We incorporate the proposed bit allocation and rate control algorithm into the Mo-
MuSys MPEG-4 codec [61] and compare it to the VM8 rate control scheme [34]. The
test QCIF video is “News” at 64 kbps. The frame rate is 10 fps. Fig. 5.4 shows the

number of bits produced by each video frame when the proposed algorithm and the
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Figure 5.3: Determination of the model parameters.

VMBS algorithm are applied. The actual coding bit rate is much closer to the target
bit rate when the proposed algorithm is applied. The numbers of bits assigned to each
video object are depicted in Fig. 5.5. Note that Object 2 takes more bits than Object
1. This is because the major activity in the scene is from the dancers (center back-
ground) in Object 2. Fig. 5.6 shows the PSNR of each video frame. With the proposed
bit allocation scheme, we see that the picture quality is significantly improved. The
improvement, about 1.25 dB on average, achieved by the proposed algorithm is due to

its more accurate R-D models and more robust rate control.

It is straightforward to extend the proposed bit allocation scheme to take the sub-
jective quality into account. For example, in general, the user is more interested in the
moving foreground objects in the scene. In our bit allocation and rate control scheme,
we can assign more bits to these objects and code them with higher fidelity. This can

be realized by introducing a distortion weight w; for each object into the objective
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function as follows,

L
rr;)in Z wio?e=(1=Pi) . N, (5.12)
b=l
L
st. Y 6;-(1—p;) - Ni = Rr. (5.13)
=1

In this case, the optimum number of bits assigned to each object is given by,

o {iwiN;

R; = &wiN; In —_—
T M &wiN;

M o2
(B — E §iw; N; In é)’ (5.14)
i—1 i

Obviously, the objects of interest should have relatively larger weights to guarantee

that they are coded with less distortion.
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Figure 5.4: Bits per frame when the proposed algorithm (solid line) and the VM8 algorithm
(dotted line) are applied to the MPEG-4 codec.

5.4 R-D Optimized Coding for H.263

In the above section, the optimum bit allocation scheme developed in Section 5.2 is

applied to MPEG-4 coding at the video object level. As we can see in this section, it

80



7000 T

—+— Object 1
—&— Object 2

6000

5000

4000+

3000

2000

1000

O L L
0 50 100 150

Figure 5.5: Bits assigned to each video object in the News sequence when the optimum bit
allocation scheme is applied to the MPEG-4 codec.
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Figure 5.6: PSNR of each frame when the proposed algorithm (solid line) and the VM8
algorithm (dotted line) are applied to the MPEG-4 codec.
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can also be applied to video coding at the macroblock level. In a QCIF video frame,
there are 99 16x16 macroblocks. We observe that it is not efficient to apply the bit
allocation scheme directly to distribute the bit budge among these 99 macroblocks for
the following two reasons: First, a large number of data sources implies that the average
number of bits for each source is very small. Effective distribution of a smaller number
of bits requires more accurate R-D models in the bit allocation scheme. Second, these
99 macroblocks may have a wide range of R-D characteristics. For example, some
macroblocks may be very active while others may be almost black. (Their coefficients
are very close to zeros.) This will introduce strong singularity into the bit allocation
scheme which often results in negative bits assigned to those almost black macroblocks.

To improve the efficiency and robustness of the optimum bit allocation scheme,
we first classify the 99 macroblocks into three classes according to their activity. The
bit allocation scheme is then employed to distribute the bit budget among these three
classes instead of among the 99 macroblocks. We observe that, after classification and
grouping, the singularity introduced to the allocation process is significantly reduced.
According to our simulation experience, “three” is a good choice for the class number

with which the optimum bit allocation operates most effectively and robustly.

5.4.1 Macroblock Classification

The activity measure we choose for macroblock classification is the variance of the
macroblock, denoted by {UJZ|1 < j < N}, where N is the total number of macroblocks
in the current video frame. In our classification scheme, we first rearrange all of the
macroblocks in decreasing order according to their variances. The first class S; consists
of the top 10 macroblocks which are the most active. The third class S5 consists of
the last 69 macroblocks which are most inactive. The remaining 20 macroblocks are
placed into the second class S5. The class sizes 10, 20, and 69 are chosen based on our

experience. Certainly, they can be adaptively adjusted according to the specific picture
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characteristics.

Each class is then treated as a separate input source. The parameters of the R-D
models for each source can be determined by the interframe prediction presented in
Section 5.3.1. To be more specific, after coding the previous frame, we already know the
number of bits R; used for coding the class S;, the number of zeros produced by S; and
its distortion D;. With Egs. 5.3 and 5.4, the values of #; and «; can be determined.
They are then used for the class S; in the current video frame. With the optimum
bit allocation scheme, the number of bits assigned to each class is determined by Eq.
(5.8). The corresponding percentage of zeros to be produced by this class is given by
Eq. (5.9).

5.4.2 Determination of the Quantization Parameter

With macroblock classification and bit allocation, the target number of bits R; for
each class are obtained. Each class of macroblocks can be treated as a generalized
video object. Accordingly, the linear rate model developed in Chapter 3 also applies
to each class. Therefore, the rate control algorithms proposed in Chapter 4 can be

employed to achieve the bits target R; for each class during the coding process.

5.4.3 Experimental Results

We incorporate the proposed bit allocation scheme and rate control algorithm into
the H.263+ codec [53] and compare it with the TMNS8 rate control scheme [23]. The
two test videos are “Foreman” at 48 kbps and “News” at 24 kbps. The frame rate
is fixed at 10 fps. Fig. 5.7 shows the number of bits produced by each video frame
when the proposed algorithm and the TMNS algorithm are applied. The numbers of
bits assigned to each macroblock class are depicted in Figs. 5.8 and 5.9. The actual
coding bit rate is shown to be much closer to the target bit rate when the proposed

algorithm is applied, especially at lower bit rates. Fig. 5.10 shows the PSNR value
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Figure 5.7: Bits per frame when the proposed algorithm and the TMNS algorithm are applied
to the H.263 codec: (A) Foreman at 48 kbps; (B) News at 24 kbps.
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Figure 5.8: The numbers of bits assigned to each macroblock class when the proposed bit
allocation scheme is applied to H.263 coding of Foreman.
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Figure 5.9: The numbers of bits assigned to each macroblock class when the proposed bit
allocation scheme is applied to H.263 coding of News.
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Figure 5.10: PSNR of each frame when the proposed algorithm and the TMN8 algorithm are
applied to the H.263 codec: (A) Foreman at 48 kbps; (B) News at 24 kbps.
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of each video frame. With the proposed bit allocation scheme, the picture quality
is significantly improved. Note that the TMNS8 rate control algorithm has already
included an optimum bit allocation scheme. But, the TMNS8 bit allocation is based on
the traditional g-domain R-D formulas [21, 23]. The improvement, about 0.8-1.0 dB,
achieved by the proposed algorithm is due to our more accurate rate and distortion
models.

The macroblock classification can also be combined with other functionalities, such
as motion tracking [69, 70] and region of interest coding [71, 72]. In this way, the
macroblock classification is closely related to the user’s interests and requirements.
In the optimum bit allocation, we can assign different distortion weights to different
regions. In this way, the region of interest can be assigned more bits and coded with

higher quality.

5.5 Summary

In this chapter, a distortion model is first developed in the p-domain. Based on this
distortion model and the linear rate model developed in Chapter 3, an optimum bit
allocation scheme is developed. It is then applied to MPEG-4 video coding to distribute
the bit budget among different video objects. It has also been applied to H.263 coding
at the macroblock-level when coupled with macroblock classification. The proposed
bit allocation scheme extends the capability of the rate control algorithm developed in
Chapter 4. In addition, significant picture quality improvement is achieved due to its
accurate R-D models.

0
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Chapter 6

p-Domain Source Modeling

In the previous chapters, we developed a linear rate model and a distortion model in
the p-domain. The linear rate model is simple and accurate since it is derived directly
from the practical coding results. However, it has a model parameter 6 which is the
slope of the rate line. In video coding, the coding statistics of previous frames can be
used to estimate the value of 8 for the current frame. Typical video coding syntax,
such as MPEG and H.263 standards, support macroblock-level adaptive quantization.
Therefore, 6 can also be adaptively estimated at the macroblock level as in the p-RC-1
rate control algorithm. However, typical still image coding algorithms, such as EZW,
SPIHT, stack-run, and JPEG image coding, do not support adaptive quantization. In
other words, the quantization of each transform coefficient is non-adaptive and does
not depend on the quantization of its preceding coefficients. The quantization of all
transform coefficients is controlled only by the picture quantization parameter, denoted
by QP.

The lack of the coding statistics of previous data and the non-adaptive quantization
scheme make it much more difficult to select the value of Q P to achieve the target coding
bit rate or picture quality in still image coding than in video coding. In this chapter we

develop a source modeling framework which can explicitly estimate the R-D functions
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before quantization and coding with very low computational complexity. Based on
the accurately estimated R-D curves, as illustrated in Fig. 1.1, we can determine the
value of Q)P to achieve the target bit rate or picture quality. This chapter is organized
as follows: After a brief review of existing approaches for source modeling, a new
p-domain framework for source modeling is presented. We show that it is a unified
framework for all typical transform coding systems, not only for transform coding of
still images, but all also for DCT-based video coding, such as H.263 and MPEG. The
proposed framework is used to estimate the the R-D curves for typical still image coding
systems such as SPIHT, stack-run, and JPEG. It is also employed for the rate control
in video coding. Furthermore, based on the estimated R-D curves, an encoder-based
rate smoothing algorithm is developed which can control the encoder such that the

output bit stream has both a smoothed rate shape and a consistent picture quality.

6.1 Source Modeling in A Brief Review

There are two basic approaches for source modeling. The first is the analytic approach.
Its objective is to derive a set of mathematical formulas for the R-D functions based
on the statistical properties of the source data. In this approach, both the coding
system and the image are first decomposed into components whose statistical models
are already known. These models are then combined to form a complete analytic
model for the whole coding system. The R-D functions for a simple quantizer have
been developed for a long time [20, 21]. In the analytic source model proposed by
Hang and Chen [10], a theoretical entropy formula for the quantized DCT coefficients
is developed based on the R-D theory of the Gaussian source and the uniform quantizer.
The mismatches between the theoretical entropy and the actual coding bit rate of the
entropy encoder is, however, compensated by empirical estimation.

The second approach is the empirical approach. Here, the R-D functions are con-
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structed by mathematical processing of the observed R-D data. In the R-D estimation
algorithm proposed by Lin and Ortega [11], eight control points on the R-D curves are
first computed by running the coding system eight times. The whole R-D curves are
then constructed by cubic interpolation. In the MPEG rate control algorithm proposed
by Ding and Liu [12], the R-D curves are fitted by mathematical functions with sev-
eral control parameters which are estimated from the observed R-D data of the coding
system. In general, this type of R-D estimation algorithms have very high complexity.
In addition, such algorithms do not provide us with insights into the R-D behaviors of

the transform coding systems [22].

It is well known that the coding performance of a coding systems is determined by
both the characteristics of the input source data and the ability of coding algorithm
to explore these characteristics. How to characterize the input source data and how
to model the coding algorithm with low complexity still remain challenging. Here,
by “low complexity” we mean the overall complexity of the R-D curves estimation
should be relative small compared to the complexity of the whole coding algorithm.
In other words, the R-D curves estimation should take much less time than the actual
coding process. In this sense, obviously, the empirical approach has high computational
complexity since it needs to run the coding process several times. In this chapter, based
on the p-domain analysis presented in Chapter 1, we develop a very efficient source
modeling framework which can accurately estimate the R-D curves before quantization

and coding with very low computational complexity and implementation cost.

6.2 A Unified Source Modeling Framework

In Fourier analysis, which is a powerful tool for digital signal processing, to study the

behavior of a function f(z), we first represent f(x) by a linear combination of the basis
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functions {sin(nx), cos(nz)} which have well-known properties, as follows,

)

f(x)=ag+ Z an cos(nz) + by, sin(nzx), (6.1)

n=1
where {a,,b,} are called Fourier coefficients. By studying these Fourier coefficients,
we can then analyze the behavior of f(z). This method is referred to as signal decom-
position and spectrum analysis. In this chapter, we apply this methodology to analyze
and estimate the rate function of an image/video encoder.

In the previous chapters, we have shown the great advantage of the p-domain anal-
ysis. When a rate function in the g-domain is mapped into the p-domain, the image-
dependent variation and highly nonlinear behavior of the rate function is significantly
removed. Therefore, in this chapter we still analyze and estimate the rate function in
the p-domain. In Chapter 3, both experimentally and theoretically, we show that, for
typical transform coding systems, the rate function in the p-domain, denoted as R(p),
is approximately linear. Although the slope of R(p) remains unknown, the linearity it-
self provides very useful information for the rate estimation carried out in this chapter.
Based on this observation, our rate estimation has two major steps: In the first step,
we employ the decomposition and analysis methodology described above to estimate
the rate function R(p) in the p-domain. In the second step, we utilize the linearity
constraint to improve the estimation accuracy and robustness.

To estimate R(p) using the decomposition scheme, we first define two basis functions
Qn:(p) and Q,(p), called characteristic rate curves, to characterize the input source
data. Here, the source data can be a still image or a video frame. We then show that,
in the p-domain, @, (p) and @, (p) have unique behaviors that enable us to estimate
them with very low computational complexity. In our decomposition scheme, the actual

rate function is represented by a linear combination of @Q,.(p) and Q,(p),

R(p) = A(p) - Qnz(p) + B(p) - Q=(p) + C(p), (6.2)
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where A(p), B(p) and C(p) are the rate decomposition coefficients. For a given input
image, Qn.(p) and @Q,(p) are fixed. If we use different coding algorithms to encode this
image, we should obtain different R(p). According to Eq. (6.2), we know the corre-
sponding decomposition coefficients should also be different. In other words, different
coding algorithms correspond to different decomposition coefficients. Therefore, we
can say that {A(p), B(p), C(p)} model the coding algorithm, while {Q,.(p), Q.(p)}
characterize the input source data. As mentioned above, the R-D performance of a
coding system is determined by these two components. We see that both of these
components have been integrated by linear combination into Eq. (6.2), which serves as
the framework for our p-domain source modeling. In the following section, we define
Qn:(p) and Q,(p), analyze their properties, and discuss the rate decomposition scheme

in detail.

6.3 Characteristic Rate Curves

We first define the characteristic rate curves Q,,(p) and Q.(p). Based on our extensive
simulation results, we then discuss their statistical properties. With these properties,

a fast algorithm is proposed to estimate these two rate curves.

6.3.1 Definition

The characteristic rate curves @, (p) and @Q,(p) are employed to characterize the trans-
form coefficients to be quantized and coded by the image/video encoder. Their def-
initions are based on the following two observations: First, as mentioned in Section
1.4, zeros play a key role in transform coding of images and videos. Therefore, it is
necessary and beneficial to model these zeros separately. In other words, we need to
classify the transform coefficients into two parts—zero and non-zero coefficients— and

model them separately. Consequently, we need to introduce two characteristic rate
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curves Q,(p) and Qn.(p) to characterize the zero and non-zero coefficients, respec-
tively. Second, we observe that, in any typical transform coding systems, coding the
non-zero coefficients is comparable to the binary representation, and coding the zeros is
comparable to the binary representation of their run-length. For example, in EZW and
SPIHT coding the coefficients are coded bit-plane by bit-plane [16, 18]. In stack-run,
explicit binary representation is employed [19]. In JPEG, for each non-zero coefficient,
the length of its binary representation is jointly coded with its preceding zeros while its
residue bits are sent out directly to the decoder [2]. In MPEG and H.263, the non-zero
coefficients are Huffman coded. Note that, in their Huffman tables, the length of the
codeword increases with the size of the non-zero coefficient [6, 9]. For the zero coef-
ficients, in JPEG, MPEG and H.263, run-length coding of zeros is directly employed.
Therefore, we believe that the binary representation of the non-zero coefficients and
the zeros run-length numbers will give us the most valuable information about their
coding characteristics in different coding systems. Accordingly, our definitions of the
two characteristic rate curves are based on the binary representation scheme. The

expressions @, (p) and Q.. (p) are defined by the following pseudo coding process.

Step 1. Conversion to 1-D array. After transform and quantization with a quantiza-
tion parameter ¢, the transform coefficients are rearranged into a 1-D array L. If
the wavelet transform is used, the subband coefficients are rearranged into £ in
a raster scan order. If DCT is used, all the DCT coefficients are rearranged into
L in a zig-zag scan order inside each block and a blockwise raster scan order at

the block level.

Step 2. Pseudo coding. For any non-zero number z, its size S(z) is defined as

S(a) = | logs ||| +2, (6.3)
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which is exactly the number of bits for its sign-magnitude representation. Note
that, according to the above definition, S(+1) is 2 instead of 1. For each contin-
uous string of zeros in £, we count their run length. Let @, be the sum of the

sizes of all the run length numbers. For all the non-zero transform coefficients in

L, we define

Q.= Y, S, (6.4)

€L, T#0

which is the sum of their sizes. Let

1 ! . 1 !

where M is the number of coefficients inside the picture. Respectively, Q),,, and
@, can be regarded as the pseudo coding bit rate for the non-zeros and zero
coefficients. Obviously, they are functions of ¢q. Let p be the percentage of zeros
among the quantized transform coefficients. From Chapter 1, we know there is
a one-to-one mapping between ¢ and p. Therefore, mathematically, Q),,, and @,
are also functions of p, denoted by @Q,.(p) and Q.(p), respectively. These two

functions are called the characteristic rate curves.

We would like to point out one implementation detail about the above definition.

As we see from Section 2.3.1, in MPEG-2, H.263 and MPEG-4 video coding, the DC

coefficients from the intracoded macroblocks are quantized with a fixed quantization

parameter 8 and encoded with a fixed number of bits which is also 8. This implies

that the coding bit rate of these DC coefficients is fixed and does not depend on the

quantization parameter. Therefore, when we scan the picture to form the 1-D array,

the DC coefficients from the intracoded macroblocks are all skipped. Their coding bit

rate is compensated by our rate decomposition scheme.
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6.3.2 Statistical Properties

Next we show that in the p-domain, the two characteristic rate curves @,.(p) and
Q.(p) have unique properties. For each sample image in Fig. 3.1, we first decompose
it with a 9-7 Debauchies wavelet [52, 13]. According to their definitions, we generate
the rate curves Qn.(p) and Q.(p) and plot them in Fig. 6.1. Two observations can
be made from these plots: First, although the sample images are quite different from
each other, their characteristic rate curves have almost the same pattern. The second
observation is that @), is very close to a straight line. Note that when p is 1.0 which
means all the coefficients are quantized to zeros, by definition @),,, = 0. That is to say,

Qn.(p) must pass through the point [1.0,0.0]. Hence, it has the following expression,

an(p) =k (1 - :0)7 (66)

where k is a constant. It can be seen that @Q,.(p) has a very simple behavior. Besides
this, for each sample image, Q,(p) also has a rather simple behavior. In Fig. 6.2, we
plot these two characteristic rate curves in the g-domain. It can be seen that in the
g-domain, they have large image-dependent variations and highly nonlinear behaviors.

The unique behaviors of Q,,,(p) and Q,(p) exist not only for wavelet coding, but also
for the DCT-based image coding. For each sample image in Fig. 3.1, according to their
definitions, we generate Q,,(p) and Q,(p) with DCT and JPEG-style quantization,
and plot them in Fig. 6.3. The same phenomenon as in the above is observed. Next,
we show that unique properties of Q. (p) and Q,(p) exist not only for still images, but
also for motion compensated pictures which are the major type of source data in video
coding. Let’s take two QCIF video sequences “Foreman” and “Salesman” as examples.
First, we run the H.263 coder on these two videos at a fixed quantization parameter
8. For each video, we output 30 sample motion-compensated difference pictures. Each
sample picture is taken at every ninth frame. Note that the first one is an I-frame

without motion compensation; all of the others are P-frames. For each sample picture,
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according to their definitions, we generate the two rate curves Qn,(p) and Q,(p) with
DCT and H.263 style quantization. These two curves for “Foreman” and “Salesman”
are plotted in Figs. 6.4 and 6.5, respectively. We can see that the unique properties of

Qn:(p) and Q,(p) also exist in transform coding of videos.

Imagel Image2 Image3 Image4 Image5 Image6
Image7 Image8 Image9 Imagel0 Imagell Imagel2
Imagel3 Imagel4 Imagel5 Imagel16 Imagel7 Imagel8
Imagel9 Image20 Image21 Image22 Image23 Image24

1

. \
[0}
06 08 1

Figure 6.1: Plots of Q,:(p) (solid) and Q,(p) (dotted) for the 24 sample images with wavelet
transform and uniform threshold quantization. The z-axis represents the percentage of zeros p
while the y-axis represents the pseudo coding bit rate. All the plots have the same coordinate
system.

6.3.3 Justification of the Linearity of Q,.(p)

The definition of @Q,,(p) is based on the pseudo coding of the non-zero transform
coefficients, which is actually the sign-magnitude representation given by Eq. (6.3).
From the simulation results given above, we observe that it has a very interesting linear
behavior. In the following, we provide a theoretical justification for the linearity of
Qnz(p). As discussed in Section 2.3.1, the quantization schemes employed in the typical
transform coding systems are all essentially uniform threshold quantizers. Therefore,

in the following, we take the uniform threshold quantizer as an example to show the
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Figure 6.2: Plots of Qn.(q) (solid) and @(q) (dotted) for the 24 sample images with wavelet
transform and uniform threshold quantization. The z-axis represents the quantization param-
eter ¢ while the y-axis represents the pseudo coding bit rate. All the plots have the same
coordinate system.
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Figure 6.3: Plots of Qn.(p) (solid) and Q.(p) (dotted) for the 24 sample images with DCT
and JPEG quantization. The z-axis represents the quantization parameter ¢ while the y-axis
represents the pseudo coding bit rate. All the plots have the same coordinate system.
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Figure 6.4: The plots of @n.(p) (solid line) and @Q.(p) (dash-dot line) for the 30 sample
difference pictures from Foreman. The z-axis represents the percentage of zeros p. All the
subplots have the same coordinate system as the one at the bottom-left corner.
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Figure 6.5: The plots of Qn.(p) (solid line) and Q.(p) (dash-dot line) for the 30 sample
difference pictures from Salesman. The z-axis represents the percentage of zeros p. All the
subplots have the same coordinate system as the one at the bottom-left corner.
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linearity of Qp.(p). It is well known that the transform coefficients have a generalized
Gaussian distribution given by Eq. (3.4). According to Eq. (6.4), for any given

quantization step size ¢, we have

2

“+o00o
Que@ =37 [, Pasla)(Llogs |1(a)| | +2) do (6.7)

where I(x)

1 (6.8)

is the quantization index of z. The corresponding percentage of zeros is given by

A
p(q) = %/1 Pgg(z) da. (6.9)

It is very difficult to derive a close-form expression for @, (p) directly from Egs. (6.7)
and (6.9). However, we can evaluate them numerically and compute a few points on
Qnz(p). In Fig. 6.6, we plot them for different » which is the shape control parameter
of pgg(x). It can be seen that these points almost lie on a straight line. This implies
that, if we assume the transform coefficients have a generalized Gaussian distribution,

Qn-(p) must be an approximately linear function.

6.3.4 Fast Estimation of Q,.(p)

Since Q. (p) is modeled as a straight line passing through the point [1.0,0.0], we need
to compute only one point on it in order to estimate the whole rate function. In the
following, we discuss the estimation procedure in detail for different transform coding
systems.

As mentioned in Section 2.3.1, typical wavelet-based image coding, such SPTHT,
EZW, and stack-run employ the uniform threshold quantizer. After transform, we
scan the subband image and generate the distribution of the transform coefficients,
denoted by D(x). We then choose one quantization parameter gg, and compute the

corresponding value of @), (qo) and p(qo) using Eqgs. (6.7) and (6.9) with pge(z) replaced
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Figure 6.6: Plots of the theoretically computed @,.(p) for the generalized Gaussian distribu-
tion with different shape control parameters v. Here, we set A = q.

by the actual distribution D(z). With the two points of [Qn.(q0), p(qo)] and [1.0,0.0],

we can construct the whole rate curve Q. (p) with Eq. (6.6) where

= an(QO)
1 —p(qo)

(6.10)
For H.263 video coding, from Eq. (2.6) we know the intracoded and intercoded mac-
roblocks have different quantization schemes. Let the distributions of the DCT coeffi-
cients in the intracoded and intercoded macroblocks be Dy(z) and Dy (z), respectively.
(As pointed out in Section 6.3.1, Dy(z) should not include the DC coefficients from the
intracoded macroblocks.) With Eqgs. (2.5), (2.6) and (6.4), we have

Qn. = Y, S(UTQ[2¢,2¢;z]) - Do(z) + > S(UTQ[2¢,2.5¢;z]) - Di(z) (6.11)

|z[>29 |z[>2.5¢

We can then compute the slope k with Eq. (6.10) and estimate the whole rate function
Qnz(p). For JPEG or MPEG coding, we can first convert its perceptual quantization

scheme into a uniform or H.263-style quantization scheme with prescaling as discussed

in Section 2.3.2, and then follow the same procedure to estimate Q. (p).
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6.3.5 Fast Estimation of Q,(p)

In Section 6.3.4, we developed a fast algorithm to estimate the rate function Q. (p).
In the following, by exploring the correlation between @Q,(p) and Q,.(p), we develop
a fast estimation scheme for @,(p). To study the correlation between two curves, we
first define feature variables for each curve, then study the correlation between these
feature variables. The feature variable for Q,,(p) is its slope k. The feature variables
for Q,(p) are its function values at p; = 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. Consider
the characteristic rate curves plotted in Fig. 6.1. For each p;,1 <14 < 6, and for each of
the 24 sample images, we know x which is the slope of Q,,.(p), and Q,(p;) which is the
value of Q),(p) at p;. Therefore, for each p;, we have a total of 24 points of {[k, Q. (p;)]}
which are depicted in Fig. 6.7.

p=0.7 p=0.75 p =0.80
0.32 0.35 0.35

0.3
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Figure 6.7: The linear correlation between s and the values Q. (p;) at 0.70, 0.75, 0.80, 0.85,
0.90 and 0.95 with wavelet transform.

Fig. 6.8 illustrates the correlation between x and Q,(p;) for the characteristic rate
curves in Fig. 6.3. Note that there is a strong correlation between x and Q,(p;). In

our extensive simulation with a wide range of images, this strong correlation has been
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Figure 6.8: The linear correlation between x and the values Q.(p;) at 0.70, 0.75, 0.80, 0.85,
0.90 and 0.95 with DCT.

found to exist. Therefore, we have the following linear correlation model,
Qz([h) = A0+ B; (6.12)

which can be employed to estimate Q.(p;). The coefficients A; and B; are obtained
by statistical regression and the corresponding linear model is also plotted in Figs. 6.7
and 6.8. Based on Eq. (6.12) , we can estimate six points on Q,(p). If necessary, the

whole rate curve can be constructed by linear interpolation.

6.4 Rate Curve Decomposition

In the previous section, we defined two rate curves, Q,,(p) and Q,(p), to characterize
the input source data. According to our decomposition and analysis scheme (presented
in Section 6.2), the actual rate curve in the p-domain R(p) is represented by a linear
combination of Q,,(p) and Q,(p), as shown in Eq. (6.2), where the coding algorithm

is modeled by the decomposition coefficients {A(p), B(p), C(p)}. In the following,
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we take the JPEG coding algorithm as an example to explain how to determine the

decomposition coefficients {A(p), B(p), C(p)} for a specific coding algorithm.

6.4.1 Decomposition Coefficients

For the 24 sample images shown in Fig. 3.1, with the fast algorithms developed
in the previous section, we can estimate the values of Q,,(p;) and Q,(p;) where
pi = 0.65+14-0.05, 1 < i < 6. By running the JPEG coding algorithm at differ-
ent quantization parameters, we can generate some points on its actual rate curve
R(p). With interpolation, we can obtain {R(p;)|1 < i < 6}. According to Eq. (6.2),

we should have

R(pi) = A(pi) - Qnz(pi) + B(pi) - Q=(pi) + C(py). (6.13)

The values of {A(p;), B(pi), C(p;i)} are obtained by linear regression over the sample
data {Qn:(pi), Q:(pi), R(p;)} for the 24 sample images. The decomposition coefficients
for the JPEG coding algorithm are listed in Table 6.1. Following the same procedure,
we can also obtain the decomposition coefficients for other coding algorithms, such as
EZW, SPIHT, stack-run, MPEG, and H.263. Once they are obtained, they are fixed

during the actual rate curve estimation process.

6.4.2 Linear Regulation

With Eq. (6.13), six points on the actual rate curve R(p) are estimated. From Chapter
3 we know that in any typical transform coding systems, R(p) is a linear function given
by Eq. (3.1). Therefore, theoretically, {R(p;)|1 < i < 6} should lie on a straight line.
But, because of the source modeling error, this is often not the case. However, we can
utilize the linear constraint to significantly remove the modeling error. To be more
specific, from {R(p;)|1 < i < 6} we first estimate the slope 6 and then construct R(p)

using the linear rate model in Eq. (3.1). According to the linear regression theorem,
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Table 6.1: The values of A(p), B(p) and C(p) at p; for the JPEG coding algorithm.

pi || Alpi) | Blpi) | C(pi)
0.70 || 1.2151 | -0.4438 | 0.9005

0.75 || 0.8089 | -0.5030 | 0.9201

0.80 || 0.6480 | -0.3831 | 0.8449

0.85 || 0.5763 | -0.3449 | 0.7856

0.90 || 0.5531 | -0.2241 | 0.6808

0.95 || 0.4043 | -0.1489 | 0.5845

the optimum estimation of § is given by

6
2 pi

26: (pz)_Gsz ( )
==L =1

6

63 o

(6.14)

According to the linear rate model, the estimated rate curve R(p) after linear regulation

is then given by

6 6
1
E (pi) +0- p—EE pi)- (6.15)

Oalb—t

6.5 A Unified R-D Curve Estimation Algorithm

Based on the fast estimation of @,.(p) and Q,(p) and the rate curve decomposition
scheme, a unified R-D curve estimation algorithm for all typical transform coding

systems is proposed as follows:

Step 1. Generation of the distribution. After transform, either DWT or DCT, gener-
ate the distribution of the transform coefficients. Note that the transform coeffi-
cients are real numbers. We can approximate their distribution by the histogram

of their integer parts. In the implementation of standard video coding such as
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MPEG and H.263, the DCT coefficients automatically have integer values. In
this case, no approximation is needed. Depending on the specific quantization
scheme, the distribution generation varies. For example, in H.263, as discussed
in Section 6.3.4, the distributions of the intracoded and intercoded macroblocks
need to be stored separately. In JPEG and MPEG coding, we need to generate
the distribution after prescaling of the DCT coeflicients. Based on the distribu-
tions of the transform coefficients, the one-to-one mapping lookup table between

q and p is obtained as discussed in Section 2.3.2.

Step 2. Estimate Qn.(p) and Q.(p). Choose one quantization parameter gy and com-
pute the corresponding Q. (qo) and p(qo) as discussed in Section 6.3.4. The slope
of Qn»(p) is obtained by Eq. (6.10). The value of Q,.(p) at p; is given by

Qnz(pi) = k(L — pi). (6.16)

With the linear correlation model in Eq. (6.12), the value of Q,(p;) is determined.

Step 3. Rate Curve Estimation. With Eq. (6.13), compute R(p;). After linear regula-
tion, the estimated rate curve R(p) is given by Eq. (6.15). With the ¢g-p mapping

lookup table, R(p) is mapped into the g-domain to obtain R(q).

Step 4. Compute distortion curve. The D-Q curve D(gq) can be directly computed

from the distribution as discussed in Section 5.1.

We can see that, in the proposed algorithm, the major computation is to generate
the distribution of the transform coefficients. The rest of the computation involves
only addition and multiplication operations that are carried out on the distribution.
Compared to the complexity of the whole coding process, the overall complexity of the
proposed estimation algorithm is very low. In addition, the R-D curves are estimated
before quantization and coding. The estimation accuracy is evaluated in the following

sections.
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6.6 Application in Still Image Coding

We apply the algorithm presented in Section 6.5 to estimate the R-D curves for trans-

form coding of still images.

6.6.1 Wavelet-Based Image Coding

The proposed estimation algorithm has been applied to the SPTHT and the stack-
run (SR) encoders. We arbitrarily choose six test images as shown in Fig. 6.9. The
estimated R-D curve and the actual one for SR and SPIHT coding are shown in Figs.
6.10 and 6.11, respectively. It can be seen that the estimated R-D curves are very close

to the actual ones curves.

Testimagel Test image2 Test image3

Test image4

Figure 6.9: The six test images for the evaluation of the proposed R-D estimation algorithm
when applied to the SPTHT and stack-run encoders.

6.6.2 DCT-Based Image Coding

The R-D estimation algorithm proposed in Section 6.5 is also applied to JPEG coding

of still images. The six test images with a wide range of R-D characteristics are shown
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Figure 6.10: The R-D curve estimation results for the stack-run coding system.

Test imagel Test image2 Test image3
40 40 40
38 38 38
36 36 36
34 34 34
32 32 32
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% 0.5 1 1.5 % 0.5 1 1.5 % 0.5 1 1.5
Testimage4 Test image5 Test image6
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34 34 34
32 32 32
30 30 30
28 28 28
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0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Figure 6.11: The R-D curve estimation results for the SPTHT coding system.
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Table 6.2: The relative estimation error for JPEG coding of the test images shown in Fig.
6.12.

Rate estimation error £()\;) for testing image

% | No. 1| No. 2| No. 3 | No. 4 | No. 5| No. 6

0.5 / -1.4% | +1.1% | +2.3% / +1.4%
08| 1.4% | -22% | -0.3% | -0.1% | -0.1% | -0.1%
1.2 | 0.8% | -2.7% | -0.9% | -1.8% | 0.4% | -1.3%
20| 1.0% | -3.9% | -2.8% | -4.0% | -0.4% | -3.1%
28 || 2.7% | -3.7% | -2.9% | -3.5% | -0.7% | -2.8%

3.2 | 3.8% | -34% | -21% | -2.7% | -0.1% | -2.3%
45 || 3.5% | -3.8% | -4.3% | -3.6% | -1.2% | -1.8%
5.5 || 4.1% | -2.8% | -2.8% | -3.1% | -0.2% | -0.2%

in Fig. 6.12. We apply the proposed estimation algorithm to estimate their rate curves.
The estimated rate curves and the actual curves are plotted in Fig. 6.13. The relative
estimation errors of the rate curve R(q) at ¢; = 0.5, 0.8, 1.2, 2.0, 2.8, 3.2, 4.5 and 5.5
for each test image are listed in Table 6.2. The estimation errors are very small, mostly

less than 3% in their absolute values.

6.7 Frame-Level Rate Control for Video Coding

The algorithm proposed in Section 6.5 is a unified R-D estimation algorithm for any
typical transform coding systems. It can also be applied to estimate the rate or dis-
tortion curve, or both, for transform coding of video sequences. In the following, we

apply the proposed algorithm to rate control for H.263 video coding.

107



Image2 Image3

Image4 Image5 Image6

[l

Figure 6.12: The six images for testing the performance of the proposed algorithm.
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Figure 6.13: The estimated rate curves and the real JPEG rate curves of the six test images.
The x-axis represents the quantization parameter q.
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6.7.1 Frame-level Rate Control Algorithm

The rate control here consists of the following major steps: In the first step, as discussed
in Section 4.2, the target bit rate R of the current video frame is determined according
to the channel bandwidth and buffer status. In the second step, using the estimation
algorithm in Section 6.5, we estimate the rate curve R(q) for the current frame. Finally,
based on R(q), the frame quantization parameter QP, can be determined to achieve
the target bit rate Rp. Obviously, QF, satisfies Ry = R(QF,). We see that this rate

control algorithm operates at the frame level.

6.7.2 The Quantization Parameter of Each Macroblock

It should be noted that, in any typical video encoder, the quantization parameter should
have an integer value between 1 and 31 [6, 8, 10]. However, the frame quantization
parameter () Py obtained in the frame-level rate control algorithm is a real number. For
example, Py could be 5.30. If we round QP to its nearest integer 5 and use it for the
quantization parameter for each macroblock in the current frame, the actual coding
bit R will be quite different from the target bit rate Ry, which is actually achieved by
QP = 5.30. In the following, we propose a very simple approach to solve this problem.
Let

QPy =[QFR], QP =|QFR], (6.17)

which are the two closest integers to QFy. Let v = QFy — QP-. Let ¢ be a random
variable with a uniform distribution on [0, 1]. Each time when we determine the
quantization parameter QP for a macroblock, we produce a sample value for p. If its
sample value is less than v, we set QP = QP,. Otherwise, we set QP = QP_. In this
way, approximately 7 - 100 percent of macroblocks in the current video frame use the
quantization parameter QP while all the rest use QP-. Consequently, the average

frame quantization parameter is very close to QFy. In this way, the actual coding
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Table 6.3: Comparison of the number of frames skipped and average PSNR for TMNS8 and
the proposed algorithm in H.263. The unit of the channel rate is kbits per second.

Test Channel Frame Skipped PSNR(dB)

Video Rate This Work | TMNS8 | This Work | TMNS8 | Gain
Foreman 64 0 1 31.65 31.60 | +0.05
Foreman 48 0 2 30.40 30.28 | +0.12

M.&D. 16 2 6 31.13 31.09 | +0.04
Salesman 32 1 3 32.89 32.84 | +0.05
Carphone 32 1 3 31.02 30.09 | +0.03

Coastguard 32 0 3 27.54 27.37 | +0.17

News 48 0 2 33.62 33.66 | —0.04

Container 32 1 4 33.23 33.05 | +0.18

bit rate will be very close to the target bit rate Rr. Let S; and S_ be the groups
of macroblocks which use QP; and QP_, respectively. The overall activity of S is
almost the same as that of S_ because the macroblocks from each set are chosen by a

uniform random variable. This is another advantage of this approach.

6.7.3 Rate Control Results

The proposed rate control algorithm is implemented in the H.263 codec (Version 2.0)
[53] and tested for various video sequences and applications. The frame rate is fixed
at 10 fps. All the test video sequences are in the QCIF picture format. In each test
described in the following, the name of the test video sequence, the channel rate C,
and the frame rate F' are indicated in the title of the respective plot. In the following
experiments on rate control, we compare the proposed algorithm with the TMNS rate

control algorithm [23].
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Buffer Regulation Performance

In Figs. 6.14(a) — (d), we plot the number of bits in the encoder buffer for each coded
frame when the proposed rate control algorithm and the TMNS algorithm are applied
in the H.263 codec. The horizontal dash-dot line shows the buffer size By. This is
the threshold for frame skipping. Note that the first frame in each video is an I-frame.
It produces a lot of bits. Therefore, when the channel rate C is relatively small, the
encoder skips several frames. It can be seen that the proposed frame-level rate control
algorithm maintains a even steadier buffer level than does the macroblock-level TMNS8
algorithm.

The proposed rate control algorithm estimates the rate curve for each frame and
controls its coding bit rate totally independently from other frames. Therefore, it does
not suffer from any performance degradation at scene changes. To show this, we first
generate a combination video by concatenating the first 30 frames of the following five
videos together: “Foreman”, “Carphone”, “Salesman”, “Miss-America” and “Coast-
guard”. In this way, a scene change occurs between any two neighboring video clips.
In Fig. 6.15, we plot the buffer fullness when the proposed rate control algorithm and
the TMNS8 algorithm are applied. Again, we see that the proposed algorithm works

very well at scene changes.

PSNR Performance and Frame Skip

In Table 6.3, we compare the average PSNR and the number of the skipped frames for
the proposed algorithm and the TMNS8 algorithm. It should be noted that the “PSNR”
here refers to the PSNR of the luminance component. For each frame skipped, we
reconstruct it with a copy of its previous frame and then compute the corresponding
PSNR value. From Table 6.3 we can see that the proposed algorithm has fewer skipped

frames and slightly better PSNR performance.
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Adaptivity to the Channel Bandwidth

In live video applications, the channel bandwidth varies over time. Normally, the video
encoder can detect the available channel bandwidth from the feedback information [73].
To simulate the rate control for live video in this situation, we suppose the channel
bandwidth is changing as plotted in Fig. 6.16 (top). The actual coding bit rates of
News are also plotted in Fig. 6.16 (bottom) when the proposed algorithm and the
TMNS rate control algorithm are applied. With the proposed rate control algorithm,

the encoder can better match the coding bit rate to the channel bandwidth.

Foreman.qcif coded at C = 64 Kbits / second and F = 10 fps Foreman.qcif coded at C = 48 Kbits / second and F = 10 fps
T T T T T T T T T T

7000 5500

”””””””””””””””” 5000
o106 s 7 =stveomers S 1

— This work ] 4500
TMN8 — This work
— - Buffer size TMN8
5000 1 4000 — - Buffer size

3500
4000 -

Buffer fullness
Now
a8
S 8
S 8

W
S
s}
S}

Buffer fullness

2000

20001 1 1500}
1000
1000
500
0 . . . . . 0 . . . . .
50 100 150 200 250 300 50 100 Fg"‘j‘e 200 250 300
Frame (a) (b)
MotherandDaughter.qcif coded at C = 16 Kbits / second and F = 10 fps Salesman.qcif coded at C = 32 Kbits / second and F = 10 fps
4000 T T T T T 4000 T T T T T
3500 1 3500
— Thiswork | | L. _ _ _ _ . _._._._.__
TMN8
3000 — - Buffer size 1 3000 —— This work
TMN8
- - Buffer size
2500 2500
a a
2 2
4 4
= =
2 2000 2 2000
] ]
=S =S
5 5
o o
1500} 15001
1000 1000
500 500
0 . . . . . 0 . . . . .
50 100 150 200 250 300 50 100 150 200 250 300

Frame (C) Frame (d)

Figure 6.14: (a) — (d) Comparison of the number of bits in the encoder buffer when the
proposed rate control algorithm (solid line) and the TMNS8 (dashed line) are employed in the
H.263 video coder. The name of respective video sequence, the channel rate C' and the frame
rate F' are indicated in the title of each plot. The horizontal dash-dot line shows the buffer size
Br. The first frame is I-frame which needs more coding bits than the P-frames.
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Combo.qcif coded at C = 96 Kbits / second and R = 10 fps
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Figure 6.15: Comparison of the number of bits in the encoder buffer when the proposed rate
control algorithm (solid line) and the TMN8 (dashed line) are applied to a video sequence with
scene changes. The test video is formed by concatenating the following 5 QCIF videos together:
Foreman, Carphone, Salesman, Miss-America and Coastguard.
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Figure 6.16: Comparison of the rate control performance with varying channel bandwidth for
News.qcif at 24 kbps.
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6.8 Compression-Based Rate Shape Smoothing

In video coding, the output bit rate of the encoder has a variable bit rate (VBR) due
to the scene activities. For active videos, the output bits stream will be bursty with
frequent and large rate fluctuations, which lead to large packet loss ratio and delay
variation [74, 75] when the coded video data is transmitted. From the standpoint
of transmission efficiency, network traffic management and resource allocation, VBR
streaming video is much harder to handle than the video stream with a constant bit
rate (CBR) [75, 76, 77]. However, CBR coding often has a large variation in picture
quality. One way to smooth the frame bit rates without severe degradation of the
picture quality is to introduce buffers on the packet delivery path [75]. The buffer
operates like a lowpass filter. To achieve good smoothing effect, the buffer size should
be relatively large, for example 10 to 30 frames. This obviously will increase the
implementation and traffic management cost. In addition, large buffer size results in
large playback start-up latency.

With the estimation algorithm proposed in Section 6.5, we can estimate the R-
D curves for the input video frame. Based on the estimated R-D curves, we can
control the quantization setting of the video encoder to achieve the target bit rate or
picture quality. In the following, based on the R-D estimation algorithm, we develop
an encoder-based rate shape smoothing algorithm. With this algorithm, the encoder
can be controlled such that the output bit stream has both a smoothed rate shape and
a consistent picture quality, which are highly desirable in practical video applications.

In real-time playback of coded video data, a constant presentation quality through-
out the whole video is highly desirable. Let the target picture quality be Dr (in dB).
Let the bit rate of each video frame be R,, where n is the frame number. Obviously,
R,, varies over time or is even bursty. Note that in practice we do not have to keep

the picture quality constant. Normally, the user cannot tell the difference between the
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picture quality of Dy dB and Dy + 1 dB when the Dr is relative high, such as 35 or
more. Based on this observation, we can let the picture quality of each frame, denoted
by D,,, vary within a small range [Dr — 0, D + §] around the target quality Dy. Here
0 is a small constant, such as 1 or 2. Obviously, this guarantees that no severe video
quality degradation occurs over time. With this relaxation of the picture quality D,,

we can now smooth the rate shape {R,} of the video stream as follows:

Step 1. Initialization. When n = 0, based on the estimated R-D curves, determine
the bit rate Ry such that the corresponding picture quality Dy is Dp. With the
rate control algorithm in Section 6.7.1, the quantization parameter QP for each

macroblock is determined to meet the target rate Ry.

Step 2. Smoothing. Suppose the current frame number is n(n > 1). Based on the
estimated R-D curves, determine the coding bit rates R+ and R_ such that the
corresponding picture quality Dy, is Dr+4§ and Dr—d, respectively. Obviously, we
have Ry > R_. If R,_1 < R_,weset R, =R_. If R,_1 > R, weset R, = R,.
Otherwise, we set R, = R, 1. This implies that we are trying to make R, as
close to R, 1 as possible under the constraint Dy — 6 < D,, < D+ 6. With the
rate control algorithm in Section 6.7.1, the quantization parameter QP for each

macroblock is determined to meet the target rate R,.

This rate smoothing algorithm imposes very little additional complexity to the
proposed rate control algorithm. To demonstrate its efficiency, we perform the following
experiment: The test video is Foreman in the QCIF format. If we set the target picture
quality for each frame as Dp = 34 dB, the corresponding bit rate for each frame R, is
plotted in Fig. 6.17. Note that the rate varies dramatically. After we apply the above
rate shape smoothing algorithm, the smoothed rate shape is shown in Fig. 6.17 in
solid line. It can be seen that after smoothing, the burtiness of the rate is significantly

reduced. The corresponding picture quality of each frame D, is plotted in Fig. 6.18.
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Figure 6.17: The rate shapes with and without smoothing for Foreman.qcif when the picture
quality variation range is 1 dB.
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Figure 6.18: The video quality after rate shape smoothing for Foreman.qcif.
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Figure 6.19: The rate shapes with and without smoothing for Foreman.qcif when the picture
quality variation range is 2 dB.

It can be seen that D, always falls in a small decibel range [33, 35], which implies the
video quality is consistent over the playback time. If we change the value of § from 1
dB to 2 dB, then rate shape is even smoother, as shown in Fig. 6.19. Our simulation
results show that with the proposed smoothing algorithm, the output bit stream of the

video encoder has both a smoothed rate shape and a consistent picture quality.

6.9 Summary

By introducing the concepts of characteristic rate curve and rate curve decomposition,
a unified framework for source modeling has been developed in this chapter. With this
framework, the R-D curves have been estimated before quantization and coding for any
typical transform coding of still images. The relative estimation error is less than 5%.
In addition, it has very low computational complexity. The source modeling framework
has also been applied to rate control for video coding. Because of its more accurate

source model, the proposed frame-level rate control algorithm is able to control the
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output bit rate of the video encoder according to the channel condition accurately and
robustly. Based on the estimated R-D curves, an encoder-based rate shape smoothing
algorithm has been developed. With this smoothing algorithm, an optimum trade-off is
made between the VBR and CBR video coding. The output bit stream of the encoder
has both a smoothed rate shape and a consistent video quality, which is highly desirable

in practical video coding and communications.
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Chapter 7

Conclusions

In this chapter, we summarize the principal contributions of this dissertation. The
proposed p-domain R-D analysis framework has more potential applications in practical
video applications, such as video transcoding, wireless video, and video transmission

over Internet. Future research directions are also discussed in this chapter.

7.1 Principal Contributions

The objective of this dissertation has been set to develop a unified source modeling
framework and a unified rate control algorithm for visual coding and transmission. The
source model and the rate control algorithm need to be accurate, robust, fast, and cost-
effective. To accomplish this objective, we have developed the p-domain R-D analysis
where the R-D functions are studied in the p-domain instead of the conventional g-
domain. As we have observed throughout this dissertation, the R-D functions have
unique behaviors in the p-domain which enables us to analyze, model and estimate
them accurately and robustly. Based on our extensive simulation results with various
coding algorithms and a wide range of image/video data, we have shown that the rate
function in any typical transform coding system is a linear function in the p-domain.

With Shannon’s source coding theorem, we have provided a theoretical justification
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for this linear rate model. Based on this model, a unified rate control algorithm was
developed for all standard video coding systems, such as MPEG-2, H.263, and MPEG-
4. Our experimental results show that the proposed rate control algorithm outperforms
other algorithms reported in the literature by providing much more accurate and robust
rate control. Within the framework of p-domain analysis, we have also developed a
generic distortion model. Based on this distortion model and the linear rate model, an
optimum bit allocation scheme has been developed in the p-domain. We have applied
the proposed bit allocation scheme to MPEG-4 coding at the object-level and to H.263
coding at the macroblock level. Our experimental results have shown that the picture

quality has been significantly improved by the proposed optimum bit allocation scheme.

In video coding, the parameters of the rate and distortion models are estimated from
the context information such as the coding statistics of previous frames or macroblocks.
To estimate the R-D functions without context information, we have developed a unified
p-domain source modeling framework for transform coding of images and videos. In
this framework, the characteristics of the input source data and the model of the coding
algorithm are integrated by the rate curve decomposition scheme. This scheme allows
us to estimate the R-D functions with very low complexity before quantization and
coding. Our extensive simulation results have shown that the estimation accuracy is
very high. Based on this R-D estimation algorithm, we have developed a frame-level
rate control algorithm which is able to maintain a even steadier buffer level than the
macroblock-level TMNS8 rate control algorithm. With the estimated R-D functions,
we also developed an encoder-based rate shape smoothing algorithm. We have shown
that, with this smoothing algorithm, the output bit stream of the video encoder has
both a smoothed rate shape and a consistent picture quality, which is highly desirable

in practical video coding applications.
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7.2 Future Directions

Some ideas for future extensions to the p-domain R-D analysis and rate control devel-

oped in this dissertation are listed in the following:

Further reduction of rate control complexity

In Chapter 4, we presented two rate control algorithms: p-RC-1 and p-RC-2.
From Section 4.2.3, we know p-RC-2 has only about half the complexity of p-RC-
1. However, from the simulation results presented in Section 4.3, we can see that
they have almost the same rate control performance. This implies that further
reduction of the algorithm complexity without significant performance degrada-
tion is still possible. In Eq. (4.2), to obtain the target number of bits R for the
transform coefficients, we need to precompute the motion vectors and header in-
formation bits. To do this, we need to complete the motion compensation for all
of the macroblocks before starting the rate control and coding process. However,
in the software reference models for MPEG-2, H.263, and MPEG-4, the motion
compensation and coding of the current macroblock must be completed before
switching to the next macroblock. As a result, our rate control algorithm does
not fit the macroblock-wise coding framework in a natural way. Obviously, this
increases the implementation cost. For this reason, it is worthwhile to investigate
an adaptive estimation scheme for the motion vectors and header information
bits, and to develop a macroblock-wise rate control algorithm which can fit the

actual coding process most naturally.

Adaptive p-domain source modeling
In Chapter 6, using the rate curve decomposition methodology, we developed a
p-domain source modeling framework. In this framework, the coding algorithm is

modeled by the decomposition coefficients which are obtained by linear regression
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of the training data. During the R-D estimation process, these decomposition
coefficients are fixed. To improve the estimation accuracy and robustness, we
can adaptively update the decomposition coefficients after a certain number of
pictures are processed by the estimation algorithm. We expect that the decompo-
sition coefficients will model the coding algorithm more accurately and robustly

as more pictures are processed.

Rate control for storage video coding and transcoding

The rate control algorithms developed in Chapter 4 have superior performance for
video coding, especially for live video coding and conversational video technology.
The storage video coding, which is another type of video application, is different
from the live video coding in that its coding could be offline with multiple passes
[24]. In this case, the R-D functions of every video frame inside a GOP can
be modeled with the R-D models developed in Chapters 3 and 5, or estimated
with the R-D estimation algorithm developed in Chapter 6. Based on the R-
D functions, optimum bit allocation can be employed to maximize the video

presentation quality at the GOP level [38, 78].

Because of the heterogeneous nature of the network, different users may connect
to the network with different bandwidth. In addition, even for the same user,
the available channel bandwidth varies dramatically over time. Therefore, in
real-time transport of the precoded video data, such as video on demand (VOD)
[81, 82], video transcoding is necessary in order to adjust the coding bit rate
according to the available channel bandwidth [79, 80]. The proposed rate control
algorithm, R-D estimation, and optimum bit allocation can be applied to control

the output bit rate of the video transcoder and to improve the picture quality.

Rate control for joint source and channel coding
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The coded video data is transmitted through the communication channel. A real-
world communication channel often suffers from transmission errors, especially
in wireless communication [83]. In this case, channel coding [84] is necessary in
order to protect the video data and guarantee the video presentation quality at
the receiver end [85, 86]. In this way, the actual coding bit rate or bandwidth
requirement of the video data should be the coding bit rate after channel coding.
Therefore, it is necessary to model the R-D behavior of the joint source-channel
coding instead of the source coding only. Based on these R-D models, we can
then develop an optimum bit allocation scheme and a rate control algorithm to

maximize the video presentation quality at the receiver end.

Rate control for network video transmission

In this dissertation, we employ a simplified network model where only the channel
bandwidth is considered. In real-world networks for video transmission, we need
also to consider other factors, such as transmission delay, cell-delay variation,
and pack-loss ratio [87]. Potentially, all of these factors have an effect on the
video presentation quality at the receiver. If the transmission delay is considered,
the coding bit rate should satisfy the buffering constraints presented in [87].
Therefore, the rate control algorithm can be employed to maximize the picture
quality under these buffering constraints. Practical video coding should also
consider the pack loss. Given a network pack-loss ratio, the encoder setting can
be optimized to acheive the best video presentation quality at the receiver. For
example, the selection of the intra/inter coding mode of each macroblock can be
R-D optimized [88, 89] to improve the quality of the video transmitted over the
network. Based on the source modeling framework developed in this dissertation,
it is worthwhile to investigate an R-D optimized encoder control algorithm for

video coding and end-to-end network transmission.
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