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Memory Efficient and High-speed 
Search Huffman Coding 

Reza Hashemian, Senior Member, IEEE 

Abstract- Code compression is a key element in high-speed 
digital data transport. A major compression is performed by 
converting the fixed-length codes to variable-length codes through 
a (semi-)entropy coding scheme. Huffman coding is shown to be 
a very efficient coding scheme. To speed up the process of search 
for a symbol in a Huffman tree and to reduce the memory size we 
have proposed a tree clustering algorithm to avoid high sparsity 
of the tree. The method is shown to be extremely efficient in 
memory requirement, and fast in searching for the symbol. For 
an experimental video data with Huffman codes extended up to 
13 bits in length, the entire memory space is shown to be 122 
words, compared to 213 = 8192 words in a normal situation. 

I. INTRODUCTION 
IGH-definition television (HDTV) is a developing H medium taking root both in broadcasting and high- 

quality commercial video applications [ 11, [ 2 ] .  The effective 
use of HDTV depends much on the efficiency of the digital 
video signal transport as well as the storage requirement for 
such data [3]. Both these objectives are substantially fulfilled 
by coding the signals and using compression techniques to 
achieve higher transmission efficiency and reduced storage 
space [4], [ 5 ] .  In general, combinations of vector quantization 
techniques, DCT, Run-length coding, and (semi-)entropy 
coding techniques is shown to provide relatively high code 
compression, close to 3.5 Mb/s or lower bit rates, for high- 
quality video signal transmissions, applied in commercial 
applications. 

The combination of Huffman coding and run-length coding 
has been shown to perform efficiently in high-speed data com- 
pression [6]-[ lo]. In fact, with some variations, this combined 
technique has been widely used as a near optimal entropy 
coding technique. For maximum compression, the coded data 
is normally sent through a continuous stream of bits with no 
specific guard-bit(s) assigned to separate between two consec- 
utive symbols. As a result, decoding procedure in this case 
must recognize the code length as well as the symbol itself. 

In its simplest form Huffman coding [6], [12] may struc- 
turally be represented by a binary tree. Due to variable-length 
coding, however, the Huffman tree gets progressively sparse as 
it grows from the root. This sparsity in the Huffman tree may 
cause tremendous waste of memory space, unless a properly 
structured technique is adopted to allocate the symbols in the 
memory. In addition, this sparsity may also result in a lengthy 
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Fig. 1. A 5-level SGH-tree 

search procedure for locating a symbol. More specifically, if 
k-bit is the longest Huffman code assigned to a set of symbols, 
the memory size for the symbols may easily reach 2k  words in 
size, in an unstructured memory environment. This evidently 
becomes prohibitively large for typical video data, where Ic can 
be 13 or higher. Ideally, it is desirable to reduce the memory 
size from typical value of 2 k ,  to a size proportional to the 
number of the actual symbols. This is not only a substantial 
reduction in memory requirement, but it may even allow us to 
replace a sizable external RAM by a much smaller memory, 
possibly inside the processing chip, for quicker access. 

The proposed algorithm addresses both these issues, Le., 
the reduction of the storage space, and achieving high-speed 
search for symbols. The algorithm is based on an ordering 
and clustering scheme that groups the codewords (tree nodes) 
within specified codeword lengths [13]. It is shown that, such 
ordering and clustering serves three major purposes: 

1) The search time for more frequent symbols (shorter 
codes) is substantially reduced compare to less frequent 
symbols, resulting in an overall faster response. 

2 )  For long codewords the search for the symbol is also 
speeded up. This is achieved through a specific partition- 
ing technique that groups the code bits in a codeword, 
and the search for a symbol is conducted by jumping 
over the groups of bits rather than going through the 
bits individually. 

3) The growth of the Huffman tree is directed toward one 
side of the tree, as shown in Fig. 1, and hence the 
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TABLE I 
REDUCTION PROCESS IN THE SOURCE LIST 

TABLE II 
TABLE OF CL-RECORDING 

CL 
5 
4 
4 
3 
2 
1 

sparsity of the tree is better controlled. This also results 
in a substantial reduction in the memory space. 

In Section I1 we start from a source listing (Histogram) 
and generate a table of codeword lengths (TOCL) for the 
symbols. This TOCL then leads to the development of an 
special Huffman tree called single-side growing Hujfbzun Tree 
(SGH-Tree) with certain properties. In Section 111 we develop 
a method for partitioning the tree and clustering the nodes in 
order to reduce the sparsity. Later in the section an addressing 
scheme is presented for further reduction of the memory. 
Huffman decoding is carried out in Section IV. For a given 
continuous stream of codewords (code-bits), a step by step 
search operation is discussed to allocate a symbol. It is shown 
through examples that different codeword lengths require 
going through different stages of search; and the proposed 
search is optimized for more frequent symbols. Finally the 
Conclusion is given in Section V. 

11. VARIABLE-LENGTH CODE STRUCTURING 

We first consider a fixed-length source code. A source H is 
defined as an ordered pair H = (S, P); where S represents a 
set of source symbols S = {SI, 5 2 , .  .. , s,} with probability 
distribution P(si)  = pi; for, p l  2 p2 L L p,-1 2 p ,  
[12]. Next, for a given source listing H, we generate a table of 
codeword lengths (TOCL) using Algorithm 1. It is important to 
note that such a table is uniquely obtained within permutation 
of the symbols in each row. In other words, for a given source 
listing H the TOCL uniquely groups the symbols into blocks, 
where each block is specified by its codeword length (CL). 
And each block of symbols, so defined, occupies one level in 
the associated Huffman tree. 

A. Algorithm 1: Table of Codeword Lengths 

There are four steps involved in creating a TOCL. 
1) A procedure similar to the initial stage in a successive 

Huffman table reduction and reordering [6] is carried 
out in this step. Initially, the symbols are listed with the 
probabilities in descending order (the ordering of the 
symbols with equal probabilities is assumed indifferent, 
at this point). Next, the pair of symbols at the bottom 
of the ordered list are merged and as a result a new 
symbol a1 is created (Table I). The symbol ul ,  with 
probability equal to sum of the probabilities of the pair, 
is then inserted at the proper location in the ordered list. 
To record this operation a codeword length recording 
(CLR) table is created which consists of three columns: 
columns 1 and 2 hold the last pair of symbols before 

being merged, and column 3, initially empty, is identified 
as the codeword length (CL) column (Table 11). In 
order to make the size of the CLR table small and 
the hardware design simpler, the new symbol a1 (in 
general u j )  is selected such that its inverse 81 (or Z3) 
represents the associated table address. For example, a l ,  
referring to the first row in the CLR table, is given 
the value of 11 11 11 10, for an 8-bit address word, and 
u2 = 11 11 1101, and so on. Another distinction between 
such a composite symbol and an original symbol is 
their difference in sign. This is important from design 
stand point, because, a dedicated sign (MSB) detector 
is all that is needed to distinguish between the two. 
In addition, it is shown that the choice of selecting 
a3 as the inverse of the table address further simplifies 
the addressing scheme, which is the subject of another 
discussion [ 141. 

2) We next continue applying the same procedure, devel- 
oped for a single row in step i), and construct the entire 
CLR table, as shown in Table 11. Note that Table I1 
contains both the original symbols s, and the composite 
ones ai  (carrying opposite signs). 

3) The third column in Table 11, designated by CL, is 
assigned to hold the codeword lengths. To fill up this 
column we start from the last row in the CLR and enter 
1. This designates the codeword length for both SI and 
u5. Next, we check for the signs of each s1 and us; if 
positive (MSB = 0) we skip, otherwise, the symbol is a 
composite one, ai (a5 in this case), and its binary inverse 
a3 (E5 = 00 . . . 0101) is a row address for Table 11. 
We now increment the number in the CL column, and 
assign the new value (i.e., 2, in this example) to the CL 
column in row 5 (00 . . . O l O l ) ,  and proceed applying 
the same operation to other rows in the CLR table, as we 
move to the top, until the CL column is completely filled. 
Note that the arrows in the table specify the addressing 
directions. For example, 4th row in Table I1 contains a2, 

u3, and 3. Here, a2 (or in fact E2 = 00 . 010) refers 
to the second row in the table, and hence we assign CL 
= 3 + 1 = 4 to this row. Composite symbol as, on the 
other hand, refers to row 3 in the table, and thus we 
assign the same CL = 4 to row 3. 

4) A close look at Table I1 indicates that each original sym- 
bol in the table has its codeword length (CL) specified. 
Hence, it only remains to order the symbols according 
to their CL values. Table 111 is the result of this ordering 
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CL 
1 
2 
3 
4 
5 

symbols 

SI 
s 2  

$ 3 3  s4, s5 

S g ,  s, 

TABLE IV 
SINGLE-SIDE GROWING HUFFMAN TABLE (SGHT) 

CL symbols 

1 81 

2 s2 
3 
4 s3, s4, s5 

5 S g ,  s7 

ZL 

Efficiency %I 

100. 
75. 
50. 
37. 
22. 

1 
2 
4 
4 
4 
5 
5 - 

Huffman Code 

0 
10 
1100 
1101 
1110 
11110 
11111 

and is identified as the table of codeword length (TOCL) 
for the source listing given in Table I. 

B. Single-Side Growing Huffman Table 

For a source listing H ,  given in Table I, Algorithm 1 
generates a TOCL for the symbols, as described earlier. 
Associated with this TOCL one can actually generate a number 
of Huffman tables (or Huffman trees), each of which being 
different in codewords but identical in the codeword lengths. 
Among different Huffman tables we select a particular one, 
called single-side growing Huffman table (SGHT), and equiv- 
alently, single-side growing H u f i a n  Tree (SGH-Tree). Table 
IV and Fig. 1 represent the SGHT and the SGH-Tree for the 
source listing in Table I, respectively. 

C. Algorithm 2: Development of a SGHT 

To construct a SGHT from a TOCL, such as the one shown 
in Table 111, we start from the first row of the table and assign 
an “all zero” codeword c1 = 00 . . .  0 to the symbol sl .  
Next we increment this codeword and assign the new value to 
the next symbol in the table. Similarly, we proceed creating 
codewords for the rest of the symbols in the same row of the 
TOCL. When we change rows, however, we have to expand 
the last codeword, after being incremented, by placing extra 
zeros to the right, until the codeword length matches the level 
(CL). In general we can write: 

c1 = 0 0  . . ’  0. 
c,+1 = (c1 + 1) * 2q--p, 

and 
c,=11 . ’ .  1 

where p and q are the codeword lengths for si and s;+1, 
respectively, and s, (associated with c,) denotes the terminal 
symbol. 

Note that the initial and the final codewords have unique 
forms which makes them special, and makes it easy to verify 
the codeword generation and implementation procedures. 

111. STORAGE ALLOCATION 

In a uniformly distributed (flat) source; where p l  = p j ,  for 
all i and j ,  the symbols have identical codeword lengths and 
CL = log2 (n); where n is the number of symbols. Evidently 
the SGH-Tree becomesfull for this case with all its leaf nodes 
hanging at the bottom of the tree. This is defined as a zero 
sparse tree, in the sense that all positions (nodes) up to a par- 
ticular level (CL) are filled up. In terms of memory allocation, 
an n-word memory (table), addressable by a CL-bit code, is 
sufficient to allocate each and every symbol without any wasfe. 

It is evident that we do not gain any compression by 
coding this type of source. In addition, this type of distri- 
bution is a very rare and special case, where any symbol is 
equally likely. In most practical cases, however, the source is 
not uniformly distributed, and hence, the SGH-Tree become 
sparse, as illustrated in Fig. 1. Our aim here is to consider the 
nonuniform case, and try to 1) optimize the storage space, and 
2) provide quick access to the symbols (data). Experiments 
with real data indicate that the SGH-Tree becomes more 
sparse as the tree grows in the number of levels, and as 
a result, the memory efficiency becomes a serious issue in 
cases of high density codewords. For some experimental video 
data, for example, the SGH-Tree grows up to 13th level for 
a source of 32 independent symbols. This indicates that of 
213 = 8192 possible locations for a normal look-up table only 
32 positions carry the real information. In other words, the 
memory efficiency has been reduced to as low as (32/8192) * 
loo%, or 0.39%, in this case. 

The method presented in this article breaks down the SGH- 
Tree into smaller clusters (subtrees) such that the memory 
efficiency increases. Before any further discussion we define 
the memory efJiciency ,l3 for a k level binary Huffman tree (or 
subtree) as: 

Number of symbols * 100 
2k‘ 

As an example, the memory efficiency up to each level in 
a 5 level Huffman tree is listed in Table V. Notice that the 
efficiency changes only when we switch to a new level (or 
equivalently to a new CL), and it decreases as we proceed to 
the higher levels. 

76. /?k = 
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4 

4 
5 

6 
6 

8 
8 
8 
9 
9 
9 
1 0  
1 0  
1 0  
1 0  
1 0  
1 2  
1 2  
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03 1 0 0 1  
4 0 4  1 0 1 0  

05 1 0 1  1 
4 0 6  1 1 0 0  

07 1 1 0 1  
08 1 1 1 0  0 

6 0 9  1 1 1 0  1 0  
Oa 1 1 1 0  1 1  
Ob 1 1 1 1  00 

7 o c  1 1 1 1  0 1 0  
7 o d  1 1 1 1  0 1  1 
8 0 e  1 1 1 1  loo0 
8 0 f  1 1 1 1  1 0 0 1  

1 0  1 1 1 1  1 0 1 0  
1 1  1 1 1 1  1 0 1  1 
1 2  1 1 1 1  1 1 0 0  
1 3  1 1 1 1  1 1 0 1  0 
1 4  1 1 1 1  1 1 0 1  1 
1 5  1 1 1 1  1 1 1 0  0 
1 6  1 1 1 1  1 1 1 0  1 0  
17 1 1 1 1  1 1 1 0  1 1  
1 8  1 1 1 1  1 1 1 1  00 
1 9  1 1 1 1  1 1 1 1  0 1  
la 1 1 1 1  1 1 1 1  1 0  
lb  1 1 1 1  1 1 1 1  1 1 0 0  
IC 1 1 1 1  1 1 1 1  1 1 0 1  

TABLE VI 
SINGLE-SIDE GROWING HUFFMAN TABLE (SGHT) 

Fig. 2. A 13-level  SGH-tree. 

Memory efficiency can be interpreted as a measure of 
the performance of the system in terms of memory space 
requirement; and it is directly related to the sparsity of the 
Huffman tree. For a multi-level Huffman tree the efficiency 
starts from loo%, for the first level, and declines as we proceed 
to the higher levels. For example, for an experimental video 
data, as shown in Fig. 2, the memory efficiency starts from 
100% for the first level and is reduced to 0.39% for the 
13th level. Higher memory efficiency for the top levels (with 
smaller CL) is a clear indication that partitioning the tree into 
smaller and less sparse clusters will reduce the memory size. 
In addition, clustering also helps to reduce the search time 
for a symbol. We define a cluster (subtree) Ti with minimum 
memory eficiency (MME) pi, if there is no level in T; with 
memory efficiency less than pi. 

A. SGH-Tree Clustering 

Given a SGH-Tree, as shown in Fig. 2 (or equivalently the 
SGHT, shown in Table VI), depending on the MME assigned, 
the tree is partitioned by a cut-line, x-x, at the Lth level 
(L = 4 for our choice of MME = 50%, in this example). 
Our first cluster (subtree), shown in Fig. 3(a), is formed by 
removing the remainder of the tree beyond the cut-line x--2. 
We define the cluster length to be equal to the maximum path 
length from the root to a node within the cluster. Here, the 
cluster length is 4, for the first cluster. Associated with this 
cluster we assign a look up table (LUT), also shown at the 
bottom of Fig. 3(a); where each entry in the table provides the 
addressing information for the corresponding terminal node 
(symbol) within that cluster, or beyond. We shall further 
explain this, later. 

To identify other clusters, in the tree, we draw more cut 
lines y-y, and z-z, each L levels apart. And in doing so we 
generate more clusters, each of which starting from a single 
node (root of the cluster) and expanded until it is terminated 
either by .terminal nodes, or nodes being intercepted by the 
next cut line. For our example a total of seven clusters are 
generated which are shown in Fig. 3(a)-(g), along with their 
LUT, shown at the bottom. The effect of this clustering can 
also be seen in the SGHT (Table VII), where the codewords 
are partitioned (cut) into groups of L-bits or less, as the result 
of the cuts by x-x, y-y, and z--z lines. 

CL I Symbols 1 Huffman Code 
2 1 0 0  100 
2 I 0 1  1 0 1  
4 I 02 I lo00 

1 2  I I d  I 1 1 1 1  1 1 1 1  1 1 1 0  
1 3  I le I 1 1 1 1  1 1 1 1  1 1 1 1  a 

I 1 3  I I f  1 1 1 1 1  1 1 1 1  1 1 1 1  1 

Next, we construct a super-tree (S-Tree) corresponding to a 
SGH-Tree. In a S-Tree each cluster is represented by a node, 
and the links connecting these nodes, represent the brunching 
nudes in the SGH-Tree, shared between two clusters. Fig. 4 
shows the S-Tree for our particular SGH-Tree (Fig. 3) ,  and 
the super-table (ST) associated with the S-Tree is also shown 
at the bottom. Note that the S-Tree has seven nodes, one for 
each cluster, while its ST has six entries. This is because the 
root cluster a is left out, and the table starts from cluster b. 

We now describe the entries in the ST and the LUT's. There 
are two numbers in each location in the ST: the first number 
identifies the cluster length, and the second one is the offset 
memory address for that cluster. For example, the entry in the 
ST corresponding to node f contains two numbers: 11 (binary) 
and 2 aH. The first number identifies the cluster length of 11 
+ 1 = 100, or 4; and the second number, 2a, specifies the 
starting address of the corresponding LUT, in the memory 
(see Table VII). 

Each entry in a LUT is an integer in sigdmagnitude 
format. Positive integers, with 0 sign, correspond to the nodes 
existed in the cluster, while the negative numbers, with 1 
sign, represent the nodes being cut by the next cut-line. 
The magnitude of a negative integer specifies a location in 
the ST, for further search. For example, suppose we have 
encountered the 15th entry in the LUT in Fig. 3(c). We find 
1/4 as sigdmagnitude at this location. The negative sign (1) 
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Fig. 3. The SGH-tree clusters and their corresponding look-up tables 

TABLE VI1 
MEMORY (RAM) SPACE ASSOCIATED WITH TABLE VI AND FIGS. 3 AND 4 

indicates that we have to move to another cluster, and 4 refers 
to the 4th entry in the ST, which corresponds to cluster e, and 
contains 01 and 26H numbers. The first number, 01, indicates 
the cluster length of 01 + 1 = 10 or 2, and the second number, 
26H, shows the starting address of cluster e in the memory. 

A positive entry in a LUT, on the other hand, indicates that 
the symbol is already found, and the magnitude comprises 
three pieces of information: i) location of the symbol in the 
memory, ii) the pertinent codeword, and iii) the codeword 
length. We get all these three pieces of information by first 
reading the positive integer in binary form, and identifying the 
most significant 1 bit (MSIB). The position of the MSlB in 
the binary number specifies the codeword length (CL), the rest 
of the bits on the right side of the MSlB gives the codeword, 
cj, and the magnitude of cj is, in fact, the relative address 
of the symbol in the memory (Table VII). As an example, 
consider the entry at the 13th position in the LUT, shown in 
Fig. 3(a). This entry is 0129, as the sigdmagnitude. The sign 
0 shows that the symbol is found, and from the magnitude 

I 

I )  . f  

Fig. 4. The S-tree and its associated set. 

29 = 00001 1101 we find the MSlB at location 4 indicating 
that CL = 4. To the immediate right of the MSlB is 1101, 
which identifies the codeword for the symbol, and that the 
symbol (07) is located at 1101 = d address (see Tables VI 
and VII). Before we proceed further it is interesting to see the 
effect of the sparsity in the memory. Although, in the process 
of clustering we increased the memory efficiency, still we are 
away from the desired 100% efficiency, and have reached close 
to 50% memory efficiency. This is clearly shown in Table VII, 
by half of the space being unused. It is, of course, possible to 
achieve 100% efficiency, by reducing the size of the clusters, 
but the price to pay may be high in terms of the search time. 

We are now ready to explain the search procedure for 
allocating a symbol from a given string of codewords. This 
is the process of the Huffman decoding. 

IV. HUFFMAN DECODING 
Compressed codes are normally received in a stream of 

r-radix digital format, representing a continuous string of 
codewords without any separation bit(s). In our case the stream 
is in binary format, and the Huffman codewords are assumed 
to be instantaneous [12], i.e., each codeword in any string 
of codewords can be decoded as soon as it is received. The 
decoding procedure basically starts by receiving an L-bit code 
c J ,  where L is the length of the top cluster in the associated 
SGH-Tree (or the SGHT). This L-bit code c j  is then used as 
the address to the associated look-up table [Fig. 3(a)]. 

To simplify our discussion we describe the rest of the 
decoding procedure through examples. We consider the case 
of 13-level SGH-Tree structure, previously described. 

We take a stream of binary Huffman codes as 
01100101 1 . .  ., where the MSB enters first and other bits 
later. We use the first L = 4 bits 01 10 = 6 as an address 
to the look-up table given in Fig. 3(a). The content of 
the table at this location is 0/5, as the sigdmagnitude. 
Positive sign (0) means that the symbol is located in this 
cluster. We now consider the magnitude 5 = 00000101, 
and find the MS 1 B at location 2, and conclude that CL 
= 2. Next to the MSlB we have 01 which represents 
the codeword, and the symbol (OlH) is also found at 
the address 01 in the memory (Table VII). 
We consider a second bit stream of 1 101 1001 1. . . and 
choose the first four bits 1101 = d. At this location in 
the LUT [Fig. 3(a)] we get 0/29, as the sigtdmagnitude. 
Again the symbol is located in this cluster with the 
magnitude, 29 = 00011101. The MSlB is apparently 
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at location 4, meaning that CL = 4, and immediate to 
the right of the MS 1B is the codeword 1101. Finally, 
the address to the memory is 1101 = d, and the symbol 
is found to be 07. 
We now assume another bit stream of 
11 11 11 11 11 110010- . . and select the first four 
bits 1111. This brings us to the 15th location in the 
LUT for cluster a [Fig. 3(a)] where we find 112 as the 
sigdmagnitude. This refers to the location 2 in the 
ST, assigned to cluster c. Here, we find a new pair 11 
(binary) and 14H; where 11 gives the length of cluster 
c as 11 + 1 = 100, or 4, and 14H is the offset for 
the symbol memory designated for cluster c. Our next 
move is to select another slice of bits from the bit 
stream, which is 11 11. We continue on and proceed to 
the LUT for cluster c. This again leads us to location 
15 in the LUT [Fig. 3(c)] where we find data 1/5. Once 
again we refer to the ST, but this time to location 5, 
associated with cluster f .  The content at this location 
is 11 (binary) and 2aH where 11 gives the cluster 
length of 11 + 1 = 100, or 4, and 2aH is the offset 
address for the symbols in cluster f .  The symbol is not 
located yet, and so we have to chose another slice of 
bits from the bit stream. The third bit slice happens 
to be 1111 again, and therefore, we move to the 15th 
location in the LUT for cluster f .  Here we find 1/6, 
and refer to the sixth item in the ST. The data here is 
read 00, and 3aH; the binary integer 00 refers to the 
length of cluster g which is 00 + 1 = 01, and 3aH 
indicates the offset address for the symbols in cluster 
g. We refer to the bit stream again and select one bit, 
which is 0. Note that only one bit of code is needed 
here, because the cluster length for g is 1. We proceed 
by referring to location 0 in the LUT for cluster g, and 
find 012. The sign 0 (positive) tells us that the symbol 
is here, and 2 = 00000010 indicates that; i) the MSlB 
is at location 1, and thus CL = 1, ii) to the right of 
the MSlB is a single 0 identifying the codeword, and 
iii) the symbol (le) is at location 3a + 0 = 3a in the 
memory (Table VII). Finally, the overall codeword is 
given as 1111,1111,1111,O with CL = 13. 

In general, we conclude that for high probable symbols 
with short codewords (4 bits or less) the search for the 
symbol is very fast, and is completed in the first try. For 
longer codewords, however, the search time grows almost 
proportional to the codeword length. In particular, if CL is the 
codeword length, and L is the maximum level selected for each 
cluster (L = 4 in our example) then the search time is closely 
proportional to 1 + CL/L. Note that increasing the maximum 
level L should normally decrease the search time, and hence, 
speed up the decoding process. There are, nevertheless, some 
serious consequences involved here. The first problem is the 
growth of the memory space requirement and decay in the 
memory efficiency. This, of course, depends on the sparsity 
of the Huffman tree and may vary from case to case, as we 
discussed earlier. The second problem is the time needed for 
a single search. As the memory is growing so is the time for 

each search, which is mainly a memory access. Consequently, 
there is always a trade off between the speed and the area for 
the selection of the maximum level L; and it may even vary 
for different Huffman tree structures, if an optimal choice is 
in mind. 

V. CONCLUSION 

In conclusion, we claim high efficiency in memory space 
as well as high-speed access to the symbols in a code de- 
compression scheme using the Huffman technique. The means 
to achieve this efficiency, as proposed, are to 1) avoid the 
sparsity of the tree structure by grouping nodes in clusters, 
and 2) use combined code bits to search for the symbol in 
smaller look-up tables. 

ACKNOWLEDGMENT 
The author wish to thank S. Eghbali and K. Golla for their 

contributions in simulating the algorithms. 

REFERENCES 

[l] C. P. Sandbank and I. Childs, “The evolution toward high-definition 
television,” Proc. IEEE, vol. 73, pp. 638-645, Apr. 1985. 

121 T. Fuiio. “Hiah-definition television systems,” Proc. IEEE, vol. 73, pp. 
L 1  

6 4 d 5 5 ,  AG. 1985. 
[3] A. K. Jain, “Image data compression: A review,” Proc. IEEE, vol. 69, 

pp. 349-389, Mar. 1981. 
141 P. G. Neumann. “Efficient error-limiting variable-length codes,” IRE . _  

Trans. Inform. Theory, vol. IT-8, pp. 292-304, July 1962. 
[SI R. Hunter and A. H. Robinson, “International digital facsimile coding 

standards,” Proc. IEEE, vol. 68, pp. 854-867, July 1980. 
161 D. A. Huffman, “A method for the construction of minimum redundancy 

codes,” Proc. IRE. vol. 40, pp. 1098-1101, Sept. 1952. 
[7] T. J. Ferguson and J. H. Rabinowitz, “Self-synchronizing Huffman 

codes,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 687-693, July 1984. 
[8] S. M. Lei and M. T. Sun, “An entropy coding system for digid 

HDTV applications,” IEEE Trans. Circuit Syst. video Technul., vol. 1, 

[9] K. H. Tzou, “High-order entropy coding for images,” IEEE Trans. 
Circuit Syst. video Technol.. vol. 2, pp. 87-89, Mar. 1992. 

[lo] M. E. Lukacs, “Variable word length coding for a high data rate DPCM 
video coder,” in Proc. Picture Coding Symp., 1986, pp. 54-56. 

[ I  11 S. M. Lei, M. T Sun, and K. H. Tzou, “Design and hardware architecture 
of high-order conditional entropy coding for image,” IEEE Trans. Circuit 
Sysr. video TechnoZ., vol. 2, pp. 176-186, June 1992. 

New York: Springer- 

PI. 147-155, Mar. 1991. 

1121 S. Roman, Coding and Znfomtion Theury, 
Verlag, 1992. 

1131 R. Hashemian. “Hieh swed search and memory efficient Huffman > - - ,  ~ 

coding,” in Proc. I953 I i E E  Int. Symp. Circuit Sysr.. May 3-6, 1993. 
[ 141 -, “Design and hardware construction of a high speed and memory 

efficient Huffman encoding,” in IEEE Infer. Con$ Cons. EZectron., 
Chicago, IL, June 21-23, 1994. 

Rem Hashemian (S’65-M’6&SM’84) was born in 
Ghazvin, Iran, on July 25, 1936. He received the 
B.S. degree from Tehran University, Tehran, Iran, 
in 1960, and the M.Sc. and Ph.D. degrees from 
the University of Wisconsin, Madison in 1965 and 
1968, respectively, all in electrical engineering. 

From 1968 to 1984, he was with Sharif (Area- 
Mehr) University of Technology, Tehran, Iran, as 
Assistant, Associate, and Professor. From 1984 to 
1987, he was with Signetics, Inc., Sunnyvale, CA, 
and he joined Northern Illinois University in 1987. 

Presently, he is with TI, Dallas, TX, on sabbatical leave from NIU. His current 
interests are ASIC design, field programmable logic, data compression, and 
computer arithmetic. 


