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Abstract- Code comprcasioll is a key dement in higb speed digital data 
h q o r L  A W r  compression is performed by converting the ked- 
length d e s  to variable-length codes through a (semi-)entmpy codlng 
= h e .  Huffman cadi i  combined with run-length coding is shm to be a 
very ef6cient coding scheme. To speed np the procem of search for a sym- 
bol h a Huff” tree lad to reduce the memory ,size we have proposed a 
tree clustering .Igorfthm to a d  high sparsity d the tree. The method is 
nhown to be very dBdent In memory ,size, d fast h searching for the 
symbol. For an apvirSenQl video dab with Hdkom codes extended up 
to I3 bits in length, the entire memory space is shown to be 126 words, 
compared to normd 2” = 81% words. 

L INTRODUCTION 

High definition television (HDTV) is a progressing medium 
taking speed both in broadcasting and high quality commercial 
video applications. The effective use of HDTV depends much on 
the efficiency of the digital video signal transport as well as the 
storage requirement for such data[l]. Both these objectives aze 
majorly W e d  by coding the signals and using compression tech- 
niques to reduce the storage space and obtain higher transmission 
efficiency. With combined Vector Quantization techniques, DCT, 
Run-length coding, and (semi-)entropy coding techniques a rela- 
tively high code compression, close to 3.5 Mbps or lower bit rates, 
for high quality video signal transmission has been achieved in 
commercial applications. 

The combination of Huffman coding and run-length coding 
has been shown to perform very efficiently in high speed data 
compression applications[l,4]. In fact, with some variations, this 
combined technique has been widely used as a near optimal entro- 
py coding technique. For maximum compression the coded data is 
normally sent in a continuous stream of bits with no separation 
between the codes of two consecutive symbols. Thus, decoding in 
this case must also recognize the code length as well as the symbol 
itself. 

In its simplest form Huffman coding[2,3] may structurally 
be represented by a binary tree. Due to variable-length coding. 
however, the Huffman tree gets progressively sparse as it grows 
from the mot. This sparsity in the tree structure may also result in 
a lengthy search prucedm for locating a symbol. In addition, if p- 
bir is the longest Huffman code assigned, then the memory would 
be 2’ words in size, which becomes very large for typical video 
applications such as p=13 or higher. 

To achieve a high speed search for a symbol, and to reduce 
the memory requirement for the Huffman tree structure we propose 
a technique that allows an ordering of the variable-length codes 
based on their code length. It is shown that, such ordering serves 
two major purposes: i) the searching time for more frequent sym- 
bols (shorter codes) is substantially reduced compare to less fre- 
quent symbols, resulting in reduction in the overall search delay. 
E) The growth of the Huffman tree is directed toward line side 
only, and hence the sparsity of the free is better controlled, and as 
a consequence, a drastic reduction in the memory space is resulted. 

In Section II we start from a source listing (Histogram) and 
generate a Table of Code-word Lengths (TOCL). This TOCL then 
leads to the development of an special Huffman tree called Single- 
side Growing H@hn Tree (SGH-Tree). In Section m we 
develop a method for clustCring the SGH-Tree and latex an ad- 
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dressing scheme is presented for reduced memory allocation. 
Huffman decoding is carried out in Section IV through several ex- 
amples, and finally the Conclusion is given in Section V. 

II. VARIABLE-LENGTH CODE STRUCTURING 

We 6rst consider a fixed-length source code. A source H is 
defined as an ordered pair H = (S,P); where, S represents a set of 
source symbols S = ( s l ,  sz, ..., SJ with probability distribution 
P(si) = pi; for, pl >= pz >= ... >= P , , ~  >= pn. Given a source listing 
H. the following Algorithm is applied to generate the TOCL for H 

A. Algorithm 1:  Table of Code-word Length 

i) A procedure similar to the initial stage in a successive 
Huffman table reduction and reordering [2] is carried out. First the 
pair of symbols at the bottom of the ordered list are merged (en- 
sembled) and instead a new symbol a, is mated (see Fig.1). The 
symbol al. with the probability ql, is then located at the proper lo- 
cation in the ordered list. To make a progressive record of this 
operation a Code-word Length Recording (CLR) table is created 
which consists of dme columns: columns 1 and 2 hold the initial 
pair of symbols before merge and column 3, initially empty, will 
contain the Code-word Length (CL) for the symbols in that row, as 
will be discussed shortly (see Fig.2). In order to redum the 
memory requirement for the CLR table, and also to speed up the 
process, the new symbol a, (in general a.) is selected such that its 
inverse (or 3 represents the associated table address. For exam- 
ple, al. referring to the first row in the CLR table, is designated by 
11111110, for an 8-bit address word, and % = 11111101, and so 
on. Another property of this selection of composite symbol is the 
sign difference between the composite symbol (aj) and that of the 
original symbol (si); where, the later is assumed to be positive in- 
teger. In addition, it is shown that the choice of selecting aj as the 
inverse of the table address significantly simplifies the hardware, 
which is the subject of another discussion [5]. 

Table 1 

a4 

s4 

Fig.1- Reduction process in the source list. 

Table 2 Table 3 

symbols Efficiency FFk=E?7 

Fig.2- Table of CLReCording. F i g 3  Table of Code-word Lengths. 



ii) In step i) we succeeded in reducing the source listing 
(Table 1) by one row and instead we added one row to the, newly 
created, CLR table. Here we continue the same procedure, reduc- 
ing Table 1, one row at a time, and growing the CLR table accord- 
ingly, until no symbol (row) is left in Table 1. To simplify our 
discussion we continue the remaider of the procedure through a 
simple example. 

Let Table 1, in Fig.1, represent an ordered source with the 
probability distribution (in terms of per cent) shown. Through steps 
i and ii we shrink Table 1 until it becomes empty and, instead, we 
generate the corresponding CLR table (Table 2), as shown in Fig.2. 
Note that Table 2 contains both, the original symbols si, and the 
composite symbols aj. However, due to the specific method of 
selecting a., the later symbols are different from the former ones 
either in the sign (for sign-integer numbers) or in the MSB (for 
unsigned-integer numbers). Also notice that the third column in 
Table 2 is initially empty, lefted to be filled up as we proceed. 

iii) The third column in Table 2 designates the CL for the 
symbols in that row. We start from the last row in Table 2 and as- 
sign 1 to the third column, as the CL for the pair of symbols in 
that row. Next, we check the sign (or the MSB) of each symbol in 
this row; if positive (or the MSB is 0) we skip; otherwise, the 
symbol aj is of the composite type and its binary inverse 3 is the 
address to a row in Table 2. With row 3 allocated in Table 2, we 
then increment CL and assign the new value to the CL in row 5. 
This operation is continued until the third column of Table 2 is 
completely filled up with CL values, as shown in Fig.2. Note that 
the arrows, shown in the figure, specify the addressing direction in 
the table. For example row 4, in this table, contains %, a,,. and 3 
as the CL for the (composite) symbols. Here a, (or in fact T )  
refers to the second row in the table and assigns CL=3+1=4 to this 
row, and a,, refers to row 3 in the table and also assigns CL=4 to 
this row. 

vi) A close look at Table 2, in Fig.2, indicates that each 
(original) symbol in the table has its code-word length (CL) 
specified- Thus, the only task remains is to order the symbols ac- 
cording to their CL. Table 3, in Fig.3, is the result of this ordering 
and it is designated as the Table of Code-word Length (TOCL) for 
the source listing given in Table 1, Fig.1. 

B.  Single-side Growing Huffman Table 

For a given source listing H Algorithm 1 generates a TOCL 
for the symbols in the source. Associated with this TOCL there 
are evidently a number of Huffman tables (Huffman trees); 
differing in code-words for a symbol but identical in the code-word 
lengths. Among these Huffman tables, however, we have selected a 
specific table, called Single-side Growing H u m n  Table (SGHT), 
or equivalently Single-side Growing H@imn Tree (SGH-Tree). A 
SGHT has always a starting code of OO... 0 for the lowest CL and it 
grows to a final code 11 ... 1 for the highest value of CL. The 
SGHT for our example, with TOCL given in Fig.3, is shown in 
Fig.4, and its corresponding SGH-Tree is given in Fig.5. 

In what follows we try to develop a simple algorithm to 
construct a SGHT from a given TOCL. Again, to simplify the 
procedure we follow an example as we proceed. 

C. Algorithm 2: Development of SGHT 

For a given TOCL, such as the one shown in Fig.3, we 
start from the first row and assign the code-word c1 = OO... 0 to the 
symbol sl; where the number of zeros in c, is equal to the value of 
CL for s1 (in our example c1 = 0). We next increment the code- 
word and assign the new value to the next symbol in the table, and 
keep creating code-words. However, if the symbols in each row are 
exhausted the procedure still continues to the next row down, ex- 

[ 
Table 4 

symbols Huffmancode 

1101 
1110 

11111 
s6 11110 

[@ @ 
Fip.5 A 5-level SGH-Tree. 

Fig.4- Single-si& Growing Huffman Table. 

cept that an extra 0 will be positioned to the right of the code- 
word, whenever a change of row is encountered. For example, to 
find the code-word for %, in Fig.3, we iirst increment c1 and then 
position one 0 to its right to get cz = 10 (see Fig.4). The same is 
true for s3; in this case cz is first incremented and then two zeros 
are positioned to the right (one for each level down) to get c, = 
1100, and so on. It is interesting to note that the final code-word, 
in this procedure, is always in the form of 11 ... 1 (with no Os), and 
no other code-word has this code sfructw. This property allows 
us to verify the code-word generation procedure, error checking, 
and to recognize the final code-word in the Huffman table. 

III. STORAGE ALLOCATION 

In a uniformly (flat) distributed source; where pi = p., for all 
i and j, all symbols have identical code-word length and d = 10% 
(ne ) ;  where n is the number of symbols in the source, and e is the 
smallest positive integer to make CL an integer. Evidently the 

SGH-Tree in this specific case becomes full with all its kcaf nodes 
hanging at the bottom of the tree (we assume e = 0, for simplicity). 
This is a zero sparse tree, in the sense that all positions (nodes) at 
the CLth level are filled. Or. in terms of memory allocation, an 
n-word memory (table) addressable by CL-bit word is sufficient to 
allocate any symbol without any wusfe. 

This, as we know, is a very special case and in fact this is 
not a proper source for coding. In almost all other cases the source 
distribution is non-uniform (no flat histogram). In this situation 
depending on the probabilities the code-word length for diffmnt 
symbols may differ, and hence, the leaf nodes in the SGH-Tree are 
distributed within different levels in the tree, as shown in Fig.5. 
An optimal storage allocation as well as a quick access to the sym- 
bol (data) is by no means a strait forward operation in this case 0. 
A simple and rather quick access to the data (symbol) is to allocate 
2 P  number of memory locations to Huffman table; where p is the 
highest code-word length in the table. In this environment the 
code-word (extended with zeros, if necessary) is used as an address 
to the Huffman table to access the symbol. This evidently is not an 
efficient method of storing the Huffman table, not at least from 
memory requirement view point. Experiments with real data indi- 
cate that the SGH-Tree becomes very sparse as the tree grows in 
number of levels (number of bits in SGHT), and hence, the 
memory efiCciency becomes poor. For example, for some expen- 
mental video data (see the example below) the SGH-Tree grows up 
to 13th level for a source of 32 independent symbols. This indi- 
cates that of ZL3 = 8192 possible locations only 32 positions cany 
information. In other words, the memory efficiency has reduced to 
0.39 per cent. 

The method presented here tries to break down the SGH- 
Tree into smaller clusters (sub-trees) such that the memory 
efficiency for each cluster is substantially increased compared to 
that of the SGH-Tree itself. Before any further discussion we 
define the memory ejjiciency k for a p level tree as: 

Existing number of symbols * 100 P =  
2p 
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As an example, the memory efficiency for a 5 levels Huffman 
tree is listed in Table 3 (Fig.3). Notice that the efficiency changes 
only when we switch to a new level (or equivalently to a new U), 
and it deneases as we go to the higher levels, down in the tree 
sfructure. As another example, we have taken an experimental 
video data and have created the SGH-Tm, shown in Figd and its 
corresponding SGHT shown in Fig.7, by using Algorithms 1 and 2 
discussed earlier in this article. The memory efficiency, in this 
example, starts from 100% for the first level and it is reduced to 
0.39% for the 13th level. Higher memory efficiency for the lower 

Fig.6 A 13 level SGH-Tree. An 
@s% example. 

Table 4 

1010 
101 1 
1100 

4 1 7  I 1101 
5 1 8  I 11100 

Fig.7 Single-side Growing Huffman Table. 

levels in a SGH-Tree structure is a clear indication that partitioning 
the tree into smaller and less sparse clusters will reduce the 
memory requirement in a Huffinan coding procedure. Here in this 
article, we explain a new method for tree clustering leading to an 
efficient memory management for Huffman coding. 

A. SGH-Tree clurtering 

Given a SGH-Tree, as shown in Fig.6 (or equivalently a 
SGHT, as shown in Fig.7), depending on the memory efficiency 
requimment, the tree is cut by a cur-line, x-x, at the ith level (i = 4 
in our example). The first cluster (subtree) is formed by removing 
the remainder of the tree beyond the cut-line x-x, as shown in 
Fig.8(a). Associated with this cluster we assign a look-up table, 
also shown in Fig.8(a); where, the entries in the table reveal the 
status of the terminal nodes (Zed nodes) within the cluster. The 
procedure for searching a symbol is as follows: a) an i-bit size 
Huffman code represents the address to the look-up table, and b) 
the stored data in the table indicates whether the corresponding 
symbol is already found, or a further search has to be followed in 
order to allocate the symbol. More clearly, a positive integer 
(MSB = 0) in the table indicates that the node is a leaf node, either 
on the cut-line or within the cluster, terminated before being cut by 
the cut-line. on the other hand, a negative integer (MSB = 1) in 
the table corresponds to a brunching node, meaning that the 
Huffman code is to be found not in this cluster but in the extended 
part. A close look at this table reveals the followings: 

fh \  
\"I 

Fig.8 The SGH-Tree clusters  and  their 
corresponding look-up tables. 

Fig.9 T h e  S-Tree and i t s  associated ST. 
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i) A positive integer in the table carry three pieces of infor- 
mation. 1) It identifies the leaf node number in the tree. 2) it pro- 
vides the address of the symbol in the memory, which is obtained 
by =moving the most significant bit 1 (excluding the sign bit) 
from the data, and 3) it provides the associated code-word length 
(by counting the significant bits following the most significant bit 1 
in the data). 

ii) A negative number, on the other hand, provides the 
address to another look-up table assigned to the higher order tree 
(called super tree), as will be discussed shortly (see Fig.9). 

Evidently, this clustering technique could also be applied to 
the rest of the SGH-Tree each starting with a roof node. With 
similar procedures we generate other clusters and their look-up 
tables h m  the original tree until the tree is exhausted. Figure.s 
8(a) to (9) provide such clusters for the entire 13 level SGH-Tree. 
shown in Fig.6. Finally, a higher order tree, called Super Tree (S- 
Tree). is developed to represent the connectivity among the clus- 
ters. In a S-TRX each node represents a cluster, and the branches 
connecting the nodes indicate a sharing node between the two clus- 
ters. Here we also associate to a S-Tree a look-up table, called 
Super Table (ST). Figure 9 shows both, the S-Tree and its ST, for 
our example of 13 level tree structure. Each location within the 
ST caries the information about one cluster, excluding the first 
cluster. This information is in two parts: the first two (or more) 
bits gives the maximum number of levels existed in that cluster, 
and the rest of the data gives the beginning address of the memory, 
containing the symbols associated with that cluster. We shall clar- 
ify this as we discuss it in the H-n decoding section. 

A simple calculation reveals that by applying the method just 
described the total memory allocation for Huffman coding is drasti- 
cally reduced. For example, given the 13-level Huffman tree exam- 
ple, this memory, including the look-up tables and the memory to 
store the symbols, is reduced to 126 words compared to 213 = 8192 
words, in a normal (un-processed) situation. 

In addition to the memory space reduction, as discussed ear- 
lier, the time to search for a symbol is also reduced in this method 
by two main factors; first, her we deal with very small look-up 
tables and memory blocks, and this substantially reduces the 
memory access time (one may use an intemal RAM rather than an 
external one). Second, through an exact grouping of the bits in a 
code-word, it has been possible to sweep a quick path to the sym- 
bol without being delayed by some feed-backs, being used in some 
other methods. We shall discuss more about the access time as we 
proceed into the Huffman decoding procedure. 

IV. HUFFMAN DECODING 

We describe the decoding procedure through some examples 
going through the SGHT structure. 

1) Consider a steam of binary Huffman code 011001011 ..., 
where the MSB enters first and other bits later. We use the first 
four bits 0110 = 6 as an address to the look-up table given in 
Fig.l(a). The content of the table shows 5 = 101b. This indicates 
that the symbol, OlH, is found and it is located in memory (RAM) 
address Olb (with leading 1 in lOlb removed). Next, we place a 1 
bit to the left of the code, 0110, to get 10110, and we match this 
code (from left to right) with the content of the table, i.e. 5 = 
101b. which results in selecting lOlb from 10110. This indicates 
that the Huffman code for the symbol is Olb, with C b 2 .  

2) Next assume a second bit stream as 11111OOO1 .... As 
usual, we take the first four bits 11 11 and refer to the table in Fig 
8(a). At address l l l l b  = DI, we find the code 1, meaning that the 
symbol is to be found outside this table. In the second part (the 
same location in the table) we find a pointer value 2 referring to: i) 
the cluster c (as the second cluster, excluding the main one), 

shown in Fig.8(c). and ii) the second location in the ST table, 
given in Fig.9. Refemng to location 2 in the ST (Fig.9) we get 

two numbers: one l l b  which indicates that the next cluster (c) has 
llb+lb=100b levels, and thus we need 4 more code-bits h m  the 
stream, Le., 1OOOb=8H, to search for the symbol. The second por- 
tion of data, i.e., 14H denotes the beginning address for the cluster 
c. In conclusion, following the same procedure explained in l), 
we obtain the symbol in the cluster c as OeH, located at 
14H+8H=lcH in the memory and the Huffman code in this case is 

In general, we conclude that for high probable symbols with 
short code-words (4 bits or less) the search for the symbol is very 
fast. For longer code-words, however, the search time grows 
almost proportional to the code-word length. In specific, if i is the 
maximum level for the clusters ( i d  in our example) then the 
search time is closely proportional to 1 +Cui.  

1 11 1 lOOObd8H. 

, 

V. CONCLUSION 

In conclusion, we claim high efficiency in memory space as 
well as high speed access to the symbols in a code &-compression 
scheme using the Huffman technique. The means to achieve this 
efficiency, as proposed, are to; i) avoid the sparsity of the tree 
structure by grouping nodes in clusters, and ii) use combined code 
bits to search for the symbol in smaller look-up tables. 
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