
High Speed Search and Memory Efficient Huffman Coding

Rem Hashemian, Senior Member IEEE
Nonhem Illinois University

Electrical Engineering Department
DeKalb. Illinois 60115-2854

Abstract- Code comprcasioll is a key dement in higb speed digital data
h q o r L A W r compression is performed by converting the ked-
length d e s to variable-length codes through a (semi-)entmpy codlng
= h e . Huffman cadi i combined with run-length coding is shm to be a
very ef6cient coding scheme. To speed np the procem of search for a sym-
bol h a Huff” tree lad to reduce the memory ,size we have proposed a
tree clustering .Igorfthm to a d high sparsity d the tree. The method is
nhown to be very dBdent In memory ,size, d fast h searching for the
symbol. For an apvirSenQl video dab with Hdkom codes extended up
to I3 bits in length, the entire memory space is shown to be 126 words,
compared to normd 2” = 81% words.

L INTRODUCTION

High definition television (HDTV) is a progressing medium
taking speed both in broadcasting and high quality commercial
video applications. The effective use of HDTV depends much on
the efficiency of the digital video signal transport as well as the
storage requirement for such data[l]. Both these objectives aze
majorly W e d by coding the signals and using compression tech-
niques to reduce the storage space and obtain higher transmission
efficiency. With combined Vector Quantization techniques, DCT,
Run-length coding, and (semi-)entropy coding techniques a rela-
tively high code compression, close to 3.5 Mbps or lower bit rates,
for high quality video signal transmission has been achieved in
commercial applications.

The combination of Huffman coding and run-length coding
has been shown to perform very efficiently in high speed data
compression applications[l,4]. In fact, with some variations, this
combined technique has been widely used as a near optimal entro-
py coding technique. For maximum compression the coded data is
normally sent in a continuous stream of bits with no separation
between the codes of two consecutive symbols. Thus, decoding in
this case must also recognize the code length as well as the symbol
itself.

In its simplest form Huffman coding[2,3] may structurally
be represented by a binary tree. Due to variable-length coding.
however, the Huffman tree gets progressively sparse as it grows
from the mot. This sparsity in the tree structure may also result in
a lengthy search prucedm for locating a symbol. In addition, if p-
bir is the longest Huffman code assigned, then the memory would
be 2’ words in size, which becomes very large for typical video
applications such as p=13 or higher.

To achieve a high speed search for a symbol, and to reduce
the memory requirement for the Huffman tree structure we propose
a technique that allows an ordering of the variable-length codes
based on their code length. It is shown that, such ordering serves
two major purposes: i) the searching time for more frequent sym-
bols (shorter codes) is substantially reduced compare to less fre-
quent symbols, resulting in reduction in the overall search delay.
E) The growth of the Huffman tree is directed toward line side
only, and hence the sparsity of the free is better controlled, and as
a consequence, a drastic reduction in the memory space is resulted.

In Section II we start from a source listing (Histogram) and
generate a Table of Code-word Lengths (TOCL). This TOCL then
leads to the development of an special Huffman tree called Single-
side Growing H@hn Tree (SGH-Tree). In Section m we
develop a method for clustCring the SGH-Tree and latex an ad-
0-7S03-1254-6B3$03.00 0 1993 IEEE

287

dressing scheme is presented for reduced memory allocation.
Huffman decoding is carried out in Section IV through several ex-
amples, and finally the Conclusion is given in Section V.

II. VARIABLE-LENGTH CODE STRUCTURING

We 6rst consider a fixed-length source code. A source H is
defined as an ordered pair H = (S,P); where, S represents a set of
source symbols S = (s l , sz, ..., SJ with probability distribution
P(si) = pi; for, pl >= pz >= ... >= P , , ~ >= pn. Given a source listing
H. the following Algorithm is applied to generate the TOCL for H

A. Algorithm 1: Table of Code-word Length

i) A procedure similar to the initial stage in a successive
Huffman table reduction and reordering [2] is carried out. First the
pair of symbols at the bottom of the ordered list are merged (en-
sembled) and instead a new symbol a, is mated (see Fig.1). The
symbol al. with the probability ql, is then located at the proper lo-
cation in the ordered list. To make a progressive record of this
operation a Code-word Length Recording (CLR) table is created
which consists of dme columns: columns 1 and 2 hold the initial
pair of symbols before merge and column 3, initially empty, will
contain the Code-word Length (CL) for the symbols in that row, as
will be discussed shortly (see Fig.2). In order to redum the
memory requirement for the CLR table, and also to speed up the
process, the new symbol a, (in general a.) is selected such that its
inverse (or 3 represents the associated table address. For exam-
ple, al. referring to the first row in the CLR table, is designated by
11111110, for an 8-bit address word, and % = 11111101, and so
on. Another property of this selection of composite symbol is the
sign difference between the composite symbol (aj) and that of the
original symbol (si); where, the later is assumed to be positive in-
teger. In addition, it is shown that the choice of selecting aj as the
inverse of the table address significantly simplifies the hardware,
which is the subject of another discussion [5].

Table 1

a4

s4

Fig.1- Reduction process in the source list.

Table 2 Table 3

symbols Efficiency FFk=E?7

Fig.2- Table of CLReCording. F i g 3 Table of Code-word Lengths.

ii) In step i) we succeeded in reducing the source listing
(Table 1) by one row and instead we added one row to the, newly
created, CLR table. Here we continue the same procedure, reduc-
ing Table 1, one row at a time, and growing the CLR table accord-
ingly, until no symbol (row) is left in Table 1. To simplify our
discussion we continue the remaider of the procedure through a
simple example.

Let Table 1, in Fig.1, represent an ordered source with the
probability distribution (in terms of per cent) shown. Through steps
i and ii we shrink Table 1 until it becomes empty and, instead, we
generate the corresponding CLR table (Table 2), as shown in Fig.2.
Note that Table 2 contains both, the original symbols si, and the
composite symbols aj. However, due to the specific method of
selecting a., the later symbols are different from the former ones
either in the sign (for sign-integer numbers) or in the MSB (for
unsigned-integer numbers). Also notice that the third column in
Table 2 is initially empty, lefted to be filled up as we proceed.

iii) The third column in Table 2 designates the CL for the
symbols in that row. We start from the last row in Table 2 and as-
sign 1 to the third column, as the CL for the pair of symbols in
that row. Next, we check the sign (or the MSB) of each symbol in
this row; if positive (or the MSB is 0) we skip; otherwise, the
symbol aj is of the composite type and its binary inverse 3 is the
address to a row in Table 2. With row 3 allocated in Table 2, we
then increment CL and assign the new value to the CL in row 5.
This operation is continued until the third column of Table 2 is
completely filled up with CL values, as shown in Fig.2. Note that
the arrows, shown in the figure, specify the addressing direction in
the table. For example row 4, in this table, contains %, a,,. and 3
as the CL for the (composite) symbols. Here a, (or in fact T)
refers to the second row in the table and assigns CL=3+1=4 to this
row, and a,, refers to row 3 in the table and also assigns CL=4 to
this row.

vi) A close look at Table 2, in Fig.2, indicates that each
(original) symbol in the table has its code-word length (CL)
specified- Thus, the only task remains is to order the symbols ac-
cording to their CL. Table 3, in Fig.3, is the result of this ordering
and it is designated as the Table of Code-word Length (TOCL) for
the source listing given in Table 1, Fig.1.

B. Single-side Growing Huffman Table

For a given source listing H Algorithm 1 generates a TOCL
for the symbols in the source. Associated with this TOCL there
are evidently a number of Huffman tables (Huffman trees);
differing in code-words for a symbol but identical in the code-word
lengths. Among these Huffman tables, however, we have selected a
specific table, called Single-side Growing H u m n Table (SGHT),
or equivalently Single-side Growing H@imn Tree (SGH-Tree). A
SGHT has always a starting code of OO... 0 for the lowest CL and it
grows to a final code 11 ... 1 for the highest value of CL. The
SGHT for our example, with TOCL given in Fig.3, is shown in
Fig.4, and its corresponding SGH-Tree is given in Fig.5.

In what follows we try to develop a simple algorithm to
construct a SGHT from a given TOCL. Again, to simplify the
procedure we follow an example as we proceed.

C. Algorithm 2: Development of SGHT

For a given TOCL, such as the one shown in Fig.3, we
start from the first row and assign the code-word c1 = OO... 0 to the
symbol sl; where the number of zeros in c, is equal to the value of
CL for s1 (in our example c1 = 0). We next increment the code-
word and assign the new value to the next symbol in the table, and
keep creating code-words. However, if the symbols in each row are
exhausted the procedure still continues to the next row down, ex-

[
Table 4

symbols Huffmancode

1101
1110

11111
s6 11110

[@ @
Fip.5 A 5-level SGH-Tree.

Fig.4- Single-si& Growing Huffman Table.

cept that an extra 0 will be positioned to the right of the code-
word, whenever a change of row is encountered. For example, to
find the code-word for %, in Fig.3, we iirst increment c1 and then
position one 0 to its right to get cz = 10 (see Fig.4). The same is
true for s3; in this case cz is first incremented and then two zeros
are positioned to the right (one for each level down) to get c, =
1100, and so on. It is interesting to note that the final code-word,
in this procedure, is always in the form of 11 ... 1 (with no Os), and
no other code-word has this code sfructw. This property allows
us to verify the code-word generation procedure, error checking,
and to recognize the final code-word in the Huffman table.

III. STORAGE ALLOCATION

In a uniformly (flat) distributed source; where pi = p., for all
i and j, all symbols have identical code-word length and d = 10%
(ne) ; where n is the number of symbols in the source, and e is the
smallest positive integer to make CL an integer. Evidently the

SGH-Tree in this specific case becomes full with all its kcaf nodes
hanging at the bottom of the tree (we assume e = 0, for simplicity).
This is a zero sparse tree, in the sense that all positions (nodes) at
the CLth level are filled. Or. in terms of memory allocation, an
n-word memory (table) addressable by CL-bit word is sufficient to
allocate any symbol without any wusfe.

This, as we know, is a very special case and in fact this is
not a proper source for coding. In almost all other cases the source
distribution is non-uniform (no flat histogram). In this situation
depending on the probabilities the code-word length for diffmnt
symbols may differ, and hence, the leaf nodes in the SGH-Tree are
distributed within different levels in the tree, as shown in Fig.5.
An optimal storage allocation as well as a quick access to the sym-
bol (data) is by no means a strait forward operation in this case 0.
A simple and rather quick access to the data (symbol) is to allocate
2 P number of memory locations to Huffman table; where p is the
highest code-word length in the table. In this environment the
code-word (extended with zeros, if necessary) is used as an address
to the Huffman table to access the symbol. This evidently is not an
efficient method of storing the Huffman table, not at least from
memory requirement view point. Experiments with real data indi-
cate that the SGH-Tree becomes very sparse as the tree grows in
number of levels (number of bits in SGHT), and hence, the
memory efiCciency becomes poor. For example, for some expen-
mental video data (see the example below) the SGH-Tree grows up
to 13th level for a source of 32 independent symbols. This indi-
cates that of ZL3 = 8192 possible locations only 32 positions cany
information. In other words, the memory efficiency has reduced to
0.39 per cent.

The method presented here tries to break down the SGH-
Tree into smaller clusters (sub-trees) such that the memory
efficiency for each cluster is substantially increased compared to
that of the SGH-Tree itself. Before any further discussion we
define the memory ejjiciency k for a p level tree as:

Existing number of symbols * 100 P =
2p

288

As an example, the memory efficiency for a 5 levels Huffman
tree is listed in Table 3 (Fig.3). Notice that the efficiency changes
only when we switch to a new level (or equivalently to a new U),
and it deneases as we go to the higher levels, down in the tree
sfructure. As another example, we have taken an experimental
video data and have created the SGH-Tm, shown in Figd and its
corresponding SGHT shown in Fig.7, by using Algorithms 1 and 2
discussed earlier in this article. The memory efficiency, in this
example, starts from 100% for the first level and it is reduced to
0.39% for the 13th level. Higher memory efficiency for the lower

Fig.6 A 13 level SGH-Tree. An
@s% example.

Table 4

1010
101 1
1100

4 1 7 I 1101
5 1 8 I 11100

Fig.7 Single-side Growing Huffman Table.

levels in a SGH-Tree structure is a clear indication that partitioning
the tree into smaller and less sparse clusters will reduce the
memory requirement in a Huffinan coding procedure. Here in this
article, we explain a new method for tree clustering leading to an
efficient memory management for Huffman coding.

A. SGH-Tree clurtering

Given a SGH-Tree, as shown in Fig.6 (or equivalently a
SGHT, as shown in Fig.7), depending on the memory efficiency
requimment, the tree is cut by a cur-line, x-x, at the ith level (i = 4
in our example). The first cluster (subtree) is formed by removing
the remainder of the tree beyond the cut-line x-x, as shown in
Fig.8(a). Associated with this cluster we assign a look-up table,
also shown in Fig.8(a); where, the entries in the table reveal the
status of the terminal nodes (Zed nodes) within the cluster. The
procedure for searching a symbol is as follows: a) an i-bit size
Huffman code represents the address to the look-up table, and b)
the stored data in the table indicates whether the corresponding
symbol is already found, or a further search has to be followed in
order to allocate the symbol. More clearly, a positive integer
(MSB = 0) in the table indicates that the node is a leaf node, either
on the cut-line or within the cluster, terminated before being cut by
the cut-line. on the other hand, a negative integer (MSB = 1) in
the table corresponds to a brunching node, meaning that the
Huffman code is to be found not in this cluster but in the extended
part. A close look at this table reveals the followings:

fh \
\"I

Fig.8 The SGH-Tree clusters and their
corresponding look-up tables.

Fig.9 T h e S-Tree and i t s associated ST.

289

i) A positive integer in the table carry three pieces of infor-
mation. 1) It identifies the leaf node number in the tree. 2) it pro-
vides the address of the symbol in the memory, which is obtained
by =moving the most significant bit 1 (excluding the sign bit)
from the data, and 3) it provides the associated code-word length
(by counting the significant bits following the most significant bit 1
in the data).

ii) A negative number, on the other hand, provides the
address to another look-up table assigned to the higher order tree
(called super tree), as will be discussed shortly (see Fig.9).

Evidently, this clustering technique could also be applied to
the rest of the SGH-Tree each starting with a roof node. With
similar procedures we generate other clusters and their look-up
tables h m the original tree until the tree is exhausted. Figure.s
8(a) to (9) provide such clusters for the entire 13 level SGH-Tree.
shown in Fig.6. Finally, a higher order tree, called Super Tree (S-
Tree). is developed to represent the connectivity among the clus-
ters. In a S-TRX each node represents a cluster, and the branches
connecting the nodes indicate a sharing node between the two clus-
ters. Here we also associate to a S-Tree a look-up table, called
Super Table (ST). Figure 9 shows both, the S-Tree and its ST, for
our example of 13 level tree structure. Each location within the
ST caries the information about one cluster, excluding the first
cluster. This information is in two parts: the first two (or more)
bits gives the maximum number of levels existed in that cluster,
and the rest of the data gives the beginning address of the memory,
containing the symbols associated with that cluster. We shall clar-
ify this as we discuss it in the H-n decoding section.

A simple calculation reveals that by applying the method just
described the total memory allocation for Huffman coding is drasti-
cally reduced. For example, given the 13-level Huffman tree exam-
ple, this memory, including the look-up tables and the memory to
store the symbols, is reduced to 126 words compared to 213 = 8192
words, in a normal (un-processed) situation.

In addition to the memory space reduction, as discussed ear-
lier, the time to search for a symbol is also reduced in this method
by two main factors; first, her we deal with very small look-up
tables and memory blocks, and this substantially reduces the
memory access time (one may use an intemal RAM rather than an
external one). Second, through an exact grouping of the bits in a
code-word, it has been possible to sweep a quick path to the sym-
bol without being delayed by some feed-backs, being used in some
other methods. We shall discuss more about the access time as we
proceed into the Huffman decoding procedure.

IV. HUFFMAN DECODING

We describe the decoding procedure through some examples
going through the SGHT structure.

1) Consider a steam of binary Huffman code 011001011 ...,
where the MSB enters first and other bits later. We use the first
four bits 0110 = 6 as an address to the look-up table given in
Fig.l(a). The content of the table shows 5 = 101b. This indicates
that the symbol, OlH, is found and it is located in memory (RAM)
address Olb (with leading 1 in lOlb removed). Next, we place a 1
bit to the left of the code, 0110, to get 10110, and we match this
code (from left to right) with the content of the table, i.e. 5 =
101b. which results in selecting lOlb from 10110. This indicates
that the Huffman code for the symbol is Olb, with C b 2 .

2) Next assume a second bit stream as 11111OOO1 As
usual, we take the first four bits 11 11 and refer to the table in Fig
8(a). At address l l l l b = DI, we find the code 1, meaning that the
symbol is to be found outside this table. In the second part (the
same location in the table) we find a pointer value 2 referring to: i)
the cluster c (as the second cluster, excluding the main one),

shown in Fig.8(c). and ii) the second location in the ST table,
given in Fig.9. Refemng to location 2 in the ST (Fig.9) we get

two numbers: one l l b which indicates that the next cluster (c) has
llb+lb=100b levels, and thus we need 4 more code-bits h m the
stream, Le., 1OOOb=8H, to search for the symbol. The second por-
tion of data, i.e., 14H denotes the beginning address for the cluster
c. In conclusion, following the same procedure explained in l),
we obtain the symbol in the cluster c as OeH, located at
14H+8H=lcH in the memory and the Huffman code in this case is

In general, we conclude that for high probable symbols with
short code-words (4 bits or less) the search for the symbol is very
fast. For longer code-words, however, the search time grows
almost proportional to the code-word length. In specific, if i is the
maximum level for the clusters (i d in our example) then the
search time is closely proportional to 1 +Cui.

1 11 1 lOOObd8H.

,

V. CONCLUSION

In conclusion, we claim high efficiency in memory space as
well as high speed access to the symbols in a code &-compression
scheme using the Huffman technique. The means to achieve this
efficiency, as proposed, are to; i) avoid the sparsity of the tree
structure by grouping nodes in clusters, and ii) use combined code
bits to search for the symbol in smaller look-up tables.

ACKNOWLEDGEMENT

The author wish to thank Shahrokh. Eghbali. and Kumar.
Golla for their conmbutions in simulating the algorithms.

REFERENCES

111.

121.

PI.

[41.

151.

A.K. Jain. "Image Data Compression: A Review," Proc. IEEE,
vol. 69, no.3. pp. 349-389, Mar. 1981.
D.A. Huffman, "A method for the construction of minimum
redundancy codes," Proc. IRE, vol. 40, no. 10. pp. 1098-1101,
Sept. 1952.
S. Roman, Coding and Information Theory, Springer-Verlag,
New York, 1992.
S.M. Sun, M.T Sun, and T.H. TZOU, "Design and Hardware
Architecture of High-Order Conditional Entropy Coding for
Image." IEEE Trans. Circuit Syst. Video Tech., vol. 2, no. 2,
pp. 176-186, June 1992.
R. Hashemian, "Algorithm Development and Hardware Design
of a Memory Efficient Huffman Encoding," to be submitted
for publication.

290

