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A B S T R A C T  

Although it is well-known that  Huffman Codes are 
optimal for text compression in a character-per-character 
encoding scheme, they are seldom used in practical situa- 
tions since they require a bit-per-bit decoding algorithm, 
which has to he written is some assembly language, and 
will perform rather slowly. A number of methods are 
presented that  avoid these difficulties. The decoding al- 
gorithms efficiently process the encoded string on a byte- 
per-byte basis, are faster than the original algorithm, and 
can be programmed in any high level language. This is 
achieved at the cost of storing some tables in the inter- 
nal memory, but with no loss in the compression sav- 
ings of the optimal Huffman codes. The internal memory 
space needed can be reduced either at  the cost of in- 
creased processing time, or by using non-binary Huffman 
codes, which give sub-optimal compression. Experimental 
results for Eng]/sh and Hebrew text are also presented. 

1. I n t r o d u c t i o n  a n d  M o t i v a t i o n  

In most on-line retrieval systems, large files 
which are stored in secondary memory are fre- 
quently accessed. These files should be stored in 
compacted form, not only to save space, but also 
to reduce the respouse-time: the time spent on 
decompressing is generally largely compensated 
for by the savings in the number of I/O-accesses, 
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since more information can be read in a single 
input operation. A given file can be compressed 
by exploiting its redundancies. For example, if 
the file is a text written in any natural language, 
one can devise a special code for its characters, 
tak/ng into account their distribution and assign- 
ing shorter codewords to frequently used letters 
than to rare ones. 

An algorithm for the construction of an op- 
timal code for a given distribution was devised by 
Huffman [1]. An efficient implementation of the 
encoding algorithm in time O(NlogN), where 
N is the size of the encoded alphabet, is given 
in Even [2]. However, in the context of infor- 
mation retrieval systems, compression is done 
only once (when building the database), whereas 
decompression directly affects the response time 
for on-line queries. We are thus more concerned 
with a good decod/ng procedure. In spite of their 
optimality, Huffraan codes are not very popular 
with programmers and are seldom used in prac- 
tice as they require bit-manipulations and are 
thus not suitable for smooth programming and 
efficient implementation in most high-level lan- 
guages. 

The main goal of this paper is to increase 
the attraetivity of Huffman codes, by designing 
a decoding routine that directly processes only 
bit-blocks of fixed and convenient size (typically, 
but not necessarily, integral bytes), making it 
therefore faster and suitable to high-level lan- 
guages programming, while still being efficient, in 
terms of space requirements. In principle, b~e-  
decoding can be achieved by using special-built 
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tables to isolate each bit of the input into a cor- 
responding byte at the beginning of the decoding 
process, applying then the usual procedure of the 
Huffman algorithm. This process can hardly be 
qualified, however, as efficient. Another approach 
would be to identify the first coded characters 
of the first byte of the encoded text, using an 
appropriate table-lookup, shifting then the non- 
decoded remaining bits to align them with the 
first bits of the following byte, and repeating the 
process until the input is exhausted. In order to 
avoid bit-shift operations, we can simulate a left 
(right) shift by repeated accesses to a table that 
contains the value 2i (~, resp.) at entry i. 

Contrary to these two methods, which 
are merely techniques to circumvent the direct 
reference to bits in the program, the method 
to be described below in section 2 aims at a 
natural and efficient byte-per-byte processing of 
the input. The decoding subroutine is extremely 
simple; some preprocessing, however, is required 
for building a number of tables that should be 
resident in internal memory during the decoding 
process. In section 3 some ideas are presented 
that can reduce the number and size of the re- 
quired tables, so as to fit the necessary infor- 
mation in a small part of a microcomputer's 
memory. By using generalized HuJhnan codes 
with radix r ~ 2, an approach is presented in 
section 4, which can again reduce the amount 
of required internal memory space, at the cost 
however of loosing some of the optimal perfor- 
mance of binary Hutfman codes. Finally ex- 
perimental results, obtained by applying these 
different variants on large corpora of English and 
Hebrew texts, are presented in section 5. 

2. The basic idea: Partial-Decoding 
Tables 

Given an alphabet L of N characters, and 
a message ( ~  sequence of elements of L) to be 
compressed, we begin by compressing it using 
the variable-length Huffman codes - -  hereafter 
denoted by H-cedes - -  of the different characters 
of L as computed by the conventional Huffanan 
algorithm. We now partition the resulting bit- 
string into k-bit blocks, where k is chosen so 
as to make the processing of k-bit blocks, with 
the particular machine and high-level language 
at hand, easy and natural. Clearly, the bound- 
aries of these blocks do not necessarily coincide 

with those of the H-codes: a k-bit block may 
contain several H-codes, and an H-code may be 
split in two (or more) adjacent k-bit blocks. As 
an example, let L -~ { A,B,C,D }, with H-codes 
.[ 0, 10, 110, 111 } respectively, and choose k = 3. 
Consider the following input string, its coding 
and the coding's partitio'n into 3-bit blocks: 

A A B D B 

0 0 1 0 1 1 1 1 0 

1 3 6 

The last line gives the integer value 0 ~ i ~ 2 3 
of the block. 

Decoding under these conditions is made 
possible by using a set of m auxiliary tables, 
which, for a given H~lffman code, are prepared in 
advance in the preprocessing stage. The number 
of entries in each table is 2 k, corresponding to 
the 2 ~ possible values of the k-bit patterns. Each 
entry is of the form (W, j),  where W is a sequence 
of characters and j (0 ~ j ~ m) is the index of 
the next table to be used. The idea is that entry i, 
0 ~ i ~ 2 k, of table number 0 contains, first, the 
longest possible decoded sequence W of charac- 
ters from the k-bit block representing the integer 
i {W may be empty when there are H-codes of 
more than k bits); usually some of the last bits 
of the block will not be decipherable, being the 
prefix P of more than one H-code; j will then 
be the index of the table corresponding to that 
prefix {if P is the empty string A, j = 0). Table 
number j is constructed in a similar way except 
for the fact that entry i will contain the analysis 
of the bit pattern formed by the prefixing of P 
to the binary representation of i. We thus need a 
table for every possible proper prefix of the given 
H-code; the number of these prefixes is obviously 
equal to the number of internal nodes of the ap- 
propriate H~lffman-tree (the root corresponding 
to the empty string and the leaves corresponding 
to the H-codes), so that m = N - 1. 

More formally, let Py, 0 ~ j ~ N -  1, 
be an enumeration of all the proper prefixes of 
the H-codes (no special relationship needs to ex- 
ist between y and Pj, except for the fact that 
Po = A). In table j corresponding to Pi, the 
i-th entry, T(j, i), is defined as follows: let B 
be the bit-string composed of the juxtaposition 
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of Py to the k-bit binary representation of i. 
Let W be the (possibly empty) longest sequence 
of characters that can be decoded from B, and 
P~ the remaining undecipherable bits of B; then 
T(y, ~) = (W,  l). 

Referring again to the simple example 
given above, there are 3 possible proper prefixes: 
A,1,11, hence 3 corresponding tables indexed 
0,1,2 resp., and these are given in Figure 1. The 
column headed 'Pattern' contains for every entry 
the binary string which is decoded in Table 0; the 
binary strings which are decodedby Tables I and 
2 are obtained by prefixing '1', resp. '11', to the 
strings in 'Pattern'. 

Entry 

0 

1 

2 

3 

4 

5 

7 

Pattern 

for Table 0 

000 

001 

010 

011 
100 
101 
110 
111 

Table 0 
W l 

AAA 0 
AA 1 
AB 0 
A 2 
BA 0 
B 1 

C 0 
D 0 

Table i 
w II 

BAA 0 
BA 1 
BB 0 

B 2 

CA 0 
c 11 
DA 0 
D il  

Table 2 

w l! 
CAA ~0 
CA 1 
CB C 

c i2 
DAA II 
DA 1 
DB 0 
D 2 

Flg~.we I, Partial deeodiag tables 

For the input example given above, we first 
access table 0 at entry 1, which yields the output 
string AA; table 1 is then used with entry 3, 
giving the output B; finally table 2 at entry 6 
gives output DB. 

The utterly simple decoding subroutine (for 
the general case) is as follows (where S(i) denotes 
the i-th block of the input stream and j is the 
index of the currently used table): 

Basic Decoding Algorithm 
i ~ - I  
j ~ O  
F e p e a t  

(output,/) .-  r(j, s(i)) 
p r i n t  output 
i * - - i+1  

u n t i l  input is exhausted 

As mentioned before, the choice of k is 
largely governed by the machine-word structure 
and the high-level language architecture. A 
natural choice in most cases would be k -~ 8, 
corresponding to a byte context, but k = 4 (half- 
byte) or k -~ 16 (half-word) are also conceivable. 

The larger is k, the greater is the number of 
characters that  can be decoded in a single itera- 
tion, thus transferring a substantial part of the 
decoding time to the preprocessing stage. The 
size of the tables however grows exponentially 
with k, and with every entry occupying (for k -~ 
8) 2 to 9 bytes, each table may require 1-2K 
bytes of internal memory. With an alphabet of 
20 to 30 characters, these storage requirements 
may be prohibitive. We now develop an approach 
that  can help reducing the number of required 
tables and their size. 

3. B i n a r y  F o r e s t s  R e d u c i n g  t h e  
N u m b e r  o f  T a b l e s  

The storage space needed by the partial 
decoding tables can be reduced by relaxing some- 
what the approach of the previous section, and 
using the conventional Hn~man decoding algo- 
rithm no more than once for every block, still 
processing only k-bit blocks. This 'is done 
by redefining the tables and adding new data- 
structures. 

Let us suppose, just for a moment, that 
after deciphering a given block B of the in- 
put that contains a "remainder ~ P (which is 
a prefix of a certain H-code), we are somehow 
able to determine the correct SUffLX of P and its 
length l, and accordingly its corresponding en- 
coded character. More precisely, since an H-code 
can extend into more than two blocks, I will be 
the length of the sufllx of P in the next k-bit 
block which contains also other H-codes, hence 
0 < I < k. In the next iteration (decoding of 
the next k-bit block which was not yet entirely 
deciphered), table number I will be used, which 
is similar to table 0, but ignores the first l bits 
of the corresponding entry, instead of prefLv./ng 
P to this entry as in section 2. 

Therefore the number of tables reduces 
from N - 1 (about 30 in a typical natural- 
language case) to only k (8 in a typical byte con- 
text), where entry i in table l, 0 _~ I < k, con- 
tains the decoding of the k -  l rightmost bits 
of the binary representation of i. It is clear, 
however, that  table 1 contains two exactly equal 
halves, and in general table l (0 < I < k) con- 
sists of 2 t identical parts. Retaining then in each 
table only the first 2 ~-t entries, we are able to 
compress the needed k tables into the size of only 
2 tables. The entries of the tables are again of 
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the form (W,.f); note however that j is not an 
index to the next table, but an identifier of the 
remainder P; it is only after finding the correct 
suifix of P and its length I that we can access the 
right table i. 

For the same example as before one ob- 
tains the tables of figure 2, where table t decodes 
the bit-strings given in 'Pattern', but ignoring 
the ~ leftmost bits, ~ -~ 0, 1, 2, and l ~ 0, 1, 2 
corresponds respectively to the proper prefixes 
A, 1, 11. 

Entry Pattern 

for Table 0 
0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

O 110 
7 111 

Table 0 
W l 

AAA 0 
A.A 1 
AB 0 
A 2 
B.A. 0 
B 1 

C 0 
D 0 

Table 1 

W l 
AA 0 
A 1 
B 0 

2 

Table 2 
W f 

A 0 
1 

Figure 2s The Sub.Stri=g Trar~el~e Tables 

The algorithm will be completed if we can 
find a method  to identify the H-code correspond- 
ing to the remainder of a given input block, using 
of course the following input block(s}. We intro- 
duce the method through an example. 

o i 

o i 

c o 

Flgus.v 8s  The Hnffmajl 'n'ee H 

Figure 3 shows a typical Hllffman t ree  for 
an alphabet L of N ~ 7 characters.  For every 
internal node, the edge pointing to the left son is 

labelled 0, the one to the right son is labelled 1; 
the root  contains A; every other node v contains a 
binary string which is obtained by concatenat ing 
the labels of the edges on the pa th  from the root  
to v. The strings in the leaves are the Huff:man 
codes of the characters in L. 

.Assume now k -~ 8 and consider the follow- 
ing ~,djacent blocks of input: 00101101 00101101. 
The first block is decoded into the string BE and 
the remainder P ~ 01. Starting at the internal 
node containing 01 and following the first bits of 
the following block, we get the H-code C, and 
length I ~ 2 for the sni~x of P, so that table 
2 will be used when decoding the next block; ig- 
noring the first 2 bits, this table translates the 
binary string 101101. 

For the general case, let us for simplicity 
first assume tha t  the depth  of H ,  which is the 
length of the longest H-code, is bounded by k. 
Given the non-empty remainder P of the current  
input block, we must access the internal node 
corresponding to P ,  proceed downwards turning 
left (0) or right (1) as indicated by the first few 
bits of the next /c-bit block, until we reach a 
leaf. This leaf contains the next character  of the 
output .  The number of levels passed is the index 
of the table to be used in the next iteration. 

Our goal is to simulate this procedure 
without having to follow a ~bit-traversal ~ of the 
tree. The algorithm we propose in the sequel uses 
a binary forest instead of the original Huffman 
tree H. For the sake of clarity, the construction 
of the forest is described in two steps. 

First, replace H by N- 2 smaller trees Hi, 
which are induced by the proper sub-trees rooted 
at the internal nodes of H, and correspond to all 
non-empty proper prefixes of the H-codes. The 
nodes of the forest contain binary strings: A for 
the roots, and for each other node v, similarly 
to the Huffman tree, a string obtained by con- 
catenating the labels of the edges on the path 
from the root to v, but padded at the right by 
zeroes so as to fill a k-bit block. The string in 
node v is denoted by VAL(v). Figure 4 depicts 
the forest obtained from the tree of our example. 
where the pointer to each tree is symbolized by 
the corresponding proper prefix. 
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Flgu.Fe 41 Forest for Proper Prefixes 

The idea is that the identifier of the 
remainder in an entry of the tables described 
above is in fact a pointer to the corresponding 
tree. The traversal of this tree is guided by the 
bits of the next k-bit block of the input, which 
Can directly be compared with the contents of the 
nodes of the tree. 

Consider now also the possibility of long H- 
codes, which extend over several blocks. They 
correspond to long paths so that  the depth of 
some trees in the forest may exceed k. During 
the traversal of a tree, passing from one level 
to the next lowest one is equivalent to advanc- 
ing one bit in the input string. Hence when the 
depth exceeds k, all the bits of the current k-bit 
block were used, and we pass to the next block. 
Therefore the above definition of VAL(v) applies 
only to nodes on levels up to k; this definition is 
generalized to any node by: VAL(v) for a node v 
on level j ,  with ik ~ j ~ (i + 1)k, i ~ 0, is the 
concatenation of the labels on the edges on the 
path from level ~k to v. 

In the second step, we compress the forest 
as could have been done with any Hllt~man tree. 
In such trees, every node has degree 0 or 2, i.e. 
they appear in pairs of brothers (except the root). 
For a pair of brother-nodes (a, b), VAL(a) and 

VAL(b) differ only in the j - th  bit, where j is the 
level of the pair (here and in what follows, the 
level of the root of a tree is 0), or more precisely, 
j ~ ( leve l  - 1) (mod k) + 1. In the compressed 
tree, every pair is represented by an unique node 
containing the VAL of the right node of the pair, 
the new root is the node obtained from the only 
pair in level 1, and the tree structure is induced 
by the non-compressed tree. Thus a tree of l 
nodes shrinks now to ( l -  1)/2 nodes. Figure 5 is 
the compressed form of the forest of figure 4. 

F ~ e  $1 The Compressed Forest 

After accessing one of the trees, the VAL 
of its root is compared with the next k-hit block 
B. If B is smaller, it must start with 0 and 
we turn left; if B is greater or equal, it must 
start with 1 and we turn right. This leads to the 
modified algorithm below. Notations are like be- 
fore, ROOT(t) points to the t-th tree of the forest, 
every node has 3 fields: VAL, a k-bit value, LEFT 
and RIGHT each of which is either a pointer to 
the next level or contains a character of the al- 
phabet. When accessing table j ,  the index is 
taken modulo the size of the table, which is 2 ~- i  

Revised Decoding Algorithm 
i* -1  
j~-O 
repeat  

(output, tree-nbr) 4-- T(j, S(i) mod 2 ~-y) 
pr in t  output 
i 4 - . - i + l  
j ~ O  
if' tree-nbr y~ 0 t h e n  

TRAVERSE (ROOT(tree-nbr) ) 
until input is exhausted 
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where the procedure TRAVERSE is deRned by 

TRAVERSE ( node ) 
r e p e a t  

if S(i) < VAL(node} t h e n  
node ~- LEFT(node) 

else 
node 4- RIGHT(node) 

if node is a character C them print C 
$- - . /+1  

j is the number of bits 
in S(i} which are 'used up' 

i f  j ~ k t h e n  
i*-O 
i* '- i+l 

until a character was printed 
e n d  

To evaluate the number of comparisons in 
the tree, let us suppose that  the letters of the 
alphabet L appear with probabilities Pi, and that  
the corresponding H-codes c; have length Ii, 1 < 
i < N.  The weighted average length is denoted 
by WAL = ~ Pdi. One may assume that the 
probability of H-code c~ being the last in a/c-bit 
block is proportional to Pdi, and that for a given 
H-code, each bit-position has equal chance to be 
the last in the block. Hence for each k-bit block, 
the average number of comparisons, ANC, in the 
forest (the average length of the sUffLX of the H- 
code which was split by the "border" of the k-bit 
block) is given by 

t~ 
ANC- 1 

-   WWgl(EP' ' 1). 

An obvious upper bound for ANC is 2!(max{ li } -  
1), but generally ANC is not much larger than 
~ ( W A L -  1) (see section 5 for numerical ex- 
amples). 

Any node ~ of the original (compressed) 
Huffman tree H' generates several nodes in the 
forest, the number of which is equal to the level 
of v in H ~. Hence the space needed to store the 
forest depends on the form of H l, thus on the 
frequency distribution. The extreme cases are: 

a. A degenerated tree with, e.g., none of the 
LEFT-fields serving as a pointer; such a tree 
is obtained by a super-increasing.sequence of 
frequencies fi, with fi+t _> ~ } - 1  fY, i = 
1 , . . . , N  - 1. The corresponding forest has 

exactly one tree with ~ nodes for 1 < i _< 
_N - 2, so that  the total number of nodes is 
O(N~). 

b. A full binary tree, obtained by an alphabet 
of N -~- 2 t characters all of which appear 
with equal probability. There are 2 y nodes 
on level jj 0 < j < t, in the compressed 
Huffman tree, thus the number of nodes in 

t - -1  the forest is ~ i - - i  ]2i  < N log 2 N.  

Therefore the space needed is between 
O(.N'logN) and O(N 2) which is reasonable in 
most practical applications. 

If one agrees to abandon the optimality of 
the Hw~m~n tree, it is possible to keep the space 
of the forest bounded by O(NlogN),  even for 
the worst distribution. This can be done by 
imposing a maximal length of K = O(logN) 
to the codewords. If K does not exceed the 
block-size k, the decoding algorithm can even 
be slightly simplified, since in the procedure 
TRAVERSE there is no need to check if the end 
of the block was reached. An other advantage of 
bounding the depth of the H-ffman tree is that 
this tends to lengthen the shortest H-code. Since 
the number of characters stored at each entry 
in the partial-decoding tables is up to 1 + [(k - 
1)/a J, where s is the length of the shortest H- 
code, this can reduce the space required to store 
each table. An algorithm for the construction 
of an optimal tree with bounded depth can for 
example be found in [3]. 

4 .  H u f f m a n  C o d e s  w i t h  R a d i x  r > 2 

The number of tables can also be reduced 
by the following simple variants which yield lower 
compression factors than the methods described 
above. Let us apply the Huffman algorithm with 
radix r, r > 2, the details of which can be 
found in H-ffman's original paper [1]. l.n the cor- 
responding r-ary tree, every internal node has r 
sons, except perhaps one on the next-to-lowest 
level of the tree which has between 2 and r sons. 
If we choose r = 2 l, we can encode the alphabet 
in a •st stage using r different symbols; then 
every symbol is replaced by a binary code of l 
bits. If in addition l divides k, the "borders" 
of the k-bit blocks never split any /-bit code. 
Hence in the partial-decoding tables, the possible 
remainders are sequences of one or more r-ary 
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symbols. There  is therefore again a correspon- 
dence between the possible remainders  and the 
internal nodes of the r -a ry  Hutfman tree, only 
t ha t  their  number  now decreased to r(n - 1) / (r  - 
1)]. Moreover, there  may  be some savings in 
the space needed for a specific table.  As we saw 
before, the space for each table  depends on the  
length a of the shortest  H-code, so this can be k 
wi th  the b inary  algori thm when s = 1, but  at  
most  rk/2] in the 4-ary case. 

Due to the restrict ions on the  choice of r ,  
there  are only few possible values. For example,  
for k -~- 8, one could use a qua te rnary  code (r 
22), where every code-word has an even number  
of bits and the number  of tables is reduced by  
a factor  of 3, or a hexadecimal code (r ~- 24), 
where the  code-word length is a multiple of 4 and 
the number  of tables is divided by  15. 

Referr ing to the Hutfman tree given in 
figure 3, suppose t h a t  a let ter  corresponding to a 
leaf on level I appears  wi th  probabi l i ty  2 - : ,  then  
the corresponding 22-ary tree is given in figure 
6. Note t ha t  the  only proper  prefixes of even 

length are A and 00, so that the number of tables 
dropped f rom 6 to 2. 

8 £ 

FIEure fls The 
o c 

Qmstern,u7 HulFmsn Tree 

However, with increasing r, compression 
will get  worse, so t ha t  the right t rade-off  must  
be chosen according to  the desired application. 

5 .  E x a m p l e s  a n d  E x p e r i m e n t s  

The  performance  of the proposed methods  
was evaluated for four different applications, 
two theoret ical  %xtreme-case ~ distr ibutions and 
two real-life cases dealing with  natura l - language 
databases:  

average length 
time uaits / letter 

DGT nbr of tables 
tree-nodes 

t o t a l  nbr of bytes 
average length 

time units / letter 
FBT nbr of tables 

tree-nodes 
t o t a l  nbr of bytes 

average length 
time units / letter 

English nbr off tables 
tree-nodes 

t o t a l  nbr of bytes 
&verage length 

time units / letter 
Hebrew nbr of tables 

tree-nodes 
t o t a l  nbr of bytes 

Standard Partial With L Bounded Quster- Hexa,. 
Huffman Decoding Binary Code nary decimal 

Tree Tables Forest Length C o d e  C o d e  

2 .000  2 . 0 0 0  2 . 0 0 0  2 .266  2 . 2 8 6  4 .000  

2 .000  0 . 2 5 0  0 .5  0 . 5 8 4  0 . 2 8 5  0 .5  

- -  31 2 2 11 3 

31 -- 465 173 --  --  

02  71424 5491 4615 1 4 0 8 0  2304 
5 5 5 5 5 . 3 7 5  6 .25'  

5 0 . 0 2 5  1 .667  1 .667 0 . 6 7 2  0 .781 

--  31 2 2 11 3 

31 --  98 98  - -  - -  

62  23040 1314 1314 8448 2304 
4.185 4.185 4.185 4.191 4 . 2 8 5  4.459 
4.185 0.523 1.285 1.286 0 . 5 3 6  0 .557  

--  25 2 2 9 2 

25 -- 93 80 -- -- 
50 25600 2251 2239 11520 1536 

4.285 4.285 4.285 4.289 4 . 3 5 3  4.624 
4.285 0.536 1.438 1.438 0.544 0.578 

--  29 2 2 10 2 

20 -- 112 111 --  --  

58 37120 2586 2553 12800 1536 

Table ls Ezperim~t¢,l resulto 
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1. A degenerated tree (DGT) obtained from an 
alphabet of 32 letters which appear with 
probabilities Pl ~ 2-# for 1 < i < 31 and 
P32 -~- 2 - 3 1 .  

2. A full binary tree (FBT) obtained from an 
alphabet of 32 letters with uniform distribu- 
tion Pl ~ 2 -5  for 1 <~ i <~ 32. 

3. The distribution of the 26 characters in an 
English text of 100,000 words chosen from 
many different sources, as given by Heaps [4] 
(pp. 199-200). 

4. The distribution of 30 Hebrew letters 
(including apostrophes and blank} as com- 
puted from the data base of the Responsa 
Retrieval Project (see for example [5]) of 
about 40 million Hebrew and Aramaic words. 

Six of the methods detailed above were ap- 
plied for these cases. First the standard Huff:man 
Code (with compressed tree) was tested. The 
maximal length of an H-code turned out to be 
31 for DGT, 5 for FBT, 10 for English and 9 for 
Hebrew. Choosing k ---- 8, the k-bit blocks ap- 
proach was then applied, first with the partial- 
decoding tables (with N - 1 tables), and then 
with the binary forest variant. Obviously the 
three methods give, by definition, the same op- 
timal compression ratio. Three more methods 
were now tested, which give reduction in storage 
requirements at the cost of a lower compres- 
sion ratio: the bounded code-length approach 
(limiting the length of H-codes to 8), the quater- 
nary Hut~man code and the hexadecimal one. 

The results are presented in Table 1. For 
each variant and each example, the first line gives 
the average length of an H-code (WAL) in bits. 

In order to compare the time-complexity of 
the different variants, we count both an access to 
a table and a comparison in a tree as one time- 
unit. The lines headed "time-units / letter" give 
the average number of units needed to decipher 
a single character. This is obviously equal to 
WAL for the standard Huffman algorithm, and 
to WAL/k for the simple approach with partial- 
decoding tables. For the variant with the binary 
forest the following argument is used: some bits 
at the beginning of each k-bit block are decoded 
using one of the trees in the forest, their number 
being at the average ANC = ~((~pl/~)/WAL -- 
1) (see section 3). A single table access then 

translates the rest of the block, except again the 
last ANC bits on the average (the ~remainder~), 
hence the average number of letters obtained by 
this table access is (k - 2 ANC)/WAL. Therefore 
the average number of time units needed for the 
processing of one character is 

ANC + I WAL (ANC + 1) 

(k - 2 ANC)/WAL + 1 k - 2 ANC + WAL" 

On our examples, the values of ANC are 1.000 
for DGT, 2 for FBT, 1.699 for English and 1.888 
for Hebrew. 

The entries entitled "tree-nodes ~ refer to 
the number of nodes in the (compressed) trees 
stored in addition to the tables. The total num- 
ber of bytes required to store the trees and/or 
tables (last line for each of the examples in Table 
1) is calculated as follows. For the standard 
Hufl~man tree one needs only 2 bytes per node, 
for the nodes of the forest, 3 bytes per node. The 
entries of the partial-decoding tables are chosen 
large enough for the longest possible sequence of 
characters {one byte for each), plus one byte for 
the pointer to the next table or tree. For ex- 
ample, the shortest H-code for English has 3 bits, 
so that at most 3 characters must be stored in 
any entry, thus the total space needed by the 
simple approach of the partial-decoding tables is 
(3 + 1) × 2 s × 25 ~ 25600 bytes. 

Summarizing the results, the different 
methods should be compared with respect to four 
parameters: their compression ratio, the ease of 
programming, the processing time and the addi- 
tional internal space. The standard H~lffman al- 
gorithm is bit-oriented, whereas all the variants 
refer only to bytes and are thus not only simpler, 
but also considerably faster. On the other hand, 
the standard algorithm needs practically no inter- 
nal memory. For the variants, there is a natural 
trade-off between simplicity and time on one side 
and space on the other. The fastest method is 
that with the partial-decoding tables, but for ex- 
ample for English, one needs 25K of internal 
memory. The approach with the forest is 2.5 
times slower, but 90% of storage can be saved. 
At the cost of loosing the optimality of the binary 
Huffman code by passing to r-ary encoding with 
r ~> 2, the storage requirements can be reduced 
drastically for only a small increase in processing 
time. 
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