
Efficient Variants of Huffman Codes
in High Level Languages
Y. Choueka 1, S.T. Klein 1,2, Y. Perll, s

IInst i tute for Information Retrieval and Computational Linguist i~ (The Responsa Project) and
Department of Mathematics and Computer Science, Bar-nan University, Ramat Oan, Israel.

2Current address:

Department of Applied Mathematics, The Welzmann Institute of Science, Rehovot 76100, Israel.

3Current address:

Department of Computer Science, Rutgers University, New Brunswick, NJ 08003, USA.

A B S T R A C T

Although it is well-known that Huffman Codes are
optimal for text compression in a character-per-character
encoding scheme, they are seldom used in practical situa-
tions since they require a bit-per-bit decoding algorithm,
which has to he written is some assembly language, and
will perform rather slowly. A number of methods are
presented that avoid these difficulties. The decoding al-
gorithms efficiently process the encoded string on a byte-
per-byte basis, are faster than the original algorithm, and
can be programmed in any high level language. This is
achieved at the cost of storing some tables in the inter-
nal memory, but with no loss in the compression sav-
ings of the optimal Huffman codes. The internal memory
space needed can be reduced either at the cost of in-
creased processing time, or by using non-binary Huffman
codes, which give sub-optimal compression. Experimental
results for Eng]/sh and Hebrew text are also presented.

1. I n t r o d u c t i o n a n d M o t i v a t i o n

In most on-line retrieval systems, large files
which are stored in secondary memory are fre-
quently accessed. These files should be stored in
compacted form, not only to save space, but also
to reduce the respouse-time: the time spent on
decompressing is generally largely compensated
for by the savings in the number of I/O-accesses,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1985 ACM 0-89791-159-8/85/006/0122 $00.75

since more information can be read in a single
input operation. A given file can be compressed
by exploiting its redundancies. For example, if
the file is a text written in any natural language,
one can devise a special code for its characters,
tak/ng into account their distribution and assign-
ing shorter codewords to frequently used letters
than to rare ones.

An algorithm for the construction of an op-
timal code for a given distribution was devised by
Huffman [1]. An efficient implementation of the
encoding algorithm in time O(NlogN), where
N is the size of the encoded alphabet, is given
in Even [2]. However, in the context of infor-
mation retrieval systems, compression is done
only once (when building the database), whereas
decompression directly affects the response time
for on-line queries. We are thus more concerned
with a good decod/ng procedure. In spite of their
optimality, Huffraan codes are not very popular
with programmers and are seldom used in prac-
tice as they require bit-manipulations and are
thus not suitable for smooth programming and
efficient implementation in most high-level lan-
guages.

The main goal of this paper is to increase
the attraetivity of Huffman codes, by designing
a decoding routine that directly processes only
bit-blocks of fixed and convenient size (typically,
but not necessarily, integral bytes), making it
therefore faster and suitable to high-level lan-
guages programming, while still being efficient, in
terms of space requirements. In principle, b~e-
decoding can be achieved by using special-built

122

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253495.342777&domain=pdf&date_stamp=1985-06-05

tables to isolate each bit of the input into a cor-
responding byte at the beginning of the decoding
process, applying then the usual procedure of the
Huffman algorithm. This process can hardly be
qualified, however, as efficient. Another approach
would be to identify the first coded characters
of the first byte of the encoded text, using an
appropriate table-lookup, shifting then the non-
decoded remaining bits to align them with the
first bits of the following byte, and repeating the
process until the input is exhausted. In order to
avoid bit-shift operations, we can simulate a left
(right) shift by repeated accesses to a table that
contains the value 2i (~, resp.) at entry i.

Contrary to these two methods, which
are merely techniques to circumvent the direct
reference to bits in the program, the method
to be described below in section 2 aims at a
natural and efficient byte-per-byte processing of
the input. The decoding subroutine is extremely
simple; some preprocessing, however, is required
for building a number of tables that should be
resident in internal memory during the decoding
process. In section 3 some ideas are presented
that can reduce the number and size of the re-
quired tables, so as to fit the necessary infor-
mation in a small part of a microcomputer's
memory. By using generalized HuJhnan codes
with radix r ~ 2, an approach is presented in
section 4, which can again reduce the amount
of required internal memory space, at the cost
however of loosing some of the optimal perfor-
mance of binary Hutfman codes. Finally ex-
perimental results, obtained by applying these
different variants on large corpora of English and
Hebrew texts, are presented in section 5.

2. The basic idea: Partial-Decoding
Tables

Given an alphabet L of N characters, and
a message (~ sequence of elements of L) to be
compressed, we begin by compressing it using
the variable-length Huffman codes - - hereafter
denoted by H-cedes - - of the different characters
of L as computed by the conventional Huffanan
algorithm. We now partition the resulting bit-
string into k-bit blocks, where k is chosen so
as to make the processing of k-bit blocks, with
the particular machine and high-level language
at hand, easy and natural. Clearly, the bound-
aries of these blocks do not necessarily coincide

with those of the H-codes: a k-bit block may
contain several H-codes, and an H-code may be
split in two (or more) adjacent k-bit blocks. As
an example, let L -~ { A,B,C,D }, with H-codes
.[0, 10, 110, 111 } respectively, and choose k = 3.
Consider the following input string, its coding
and the coding's partitio'n into 3-bit blocks:

A A B D B

0 0 1 0 1 1 1 1 0

1 3 6

The last line gives the integer value 0 ~ i ~ 2 3
of the block.

Decoding under these conditions is made
possible by using a set of m auxiliary tables,
which, for a given H~lffman code, are prepared in
advance in the preprocessing stage. The number
of entries in each table is 2 k, corresponding to
the 2 ~ possible values of the k-bit patterns. Each
entry is of the form (W, j), where W is a sequence
of characters and j (0 ~ j ~ m) is the index of
the next table to be used. The idea is that entry i,
0 ~ i ~ 2 k, of table number 0 contains, first, the
longest possible decoded sequence W of charac-
ters from the k-bit block representing the integer
i {W may be empty when there are H-codes of
more than k bits); usually some of the last bits
of the block will not be decipherable, being the
prefix P of more than one H-code; j will then
be the index of the table corresponding to that
prefix {if P is the empty string A, j = 0). Table
number j is constructed in a similar way except
for the fact that entry i will contain the analysis
of the bit pattern formed by the prefixing of P
to the binary representation of i. We thus need a
table for every possible proper prefix of the given
H-code; the number of these prefixes is obviously
equal to the number of internal nodes of the ap-
propriate H~lffman-tree (the root corresponding
to the empty string and the leaves corresponding
to the H-codes), so that m = N - 1.

More formally, let Py, 0 ~ j ~ N - 1,
be an enumeration of all the proper prefixes of
the H-codes (no special relationship needs to ex-
ist between y and Pj, except for the fact that
Po = A). In table j corresponding to Pi, the
i-th entry, T(j, i), is defined as follows: let B
be the bit-string composed of the juxtaposition

123

of Py to the k-bit binary representation of i.
Let W be the (possibly empty) longest sequence
of characters that can be decoded from B, and
P~ the remaining undecipherable bits of B; then
T(y, ~) = (W, l).

Referring again to the simple example
given above, there are 3 possible proper prefixes:
A,1,11, hence 3 corresponding tables indexed
0,1,2 resp., and these are given in Figure 1. The
column headed 'Pattern' contains for every entry
the binary string which is decoded in Table 0; the
binary strings which are decodedby Tables I and
2 are obtained by prefixing '1', resp. '11', to the
strings in 'Pattern'.

Entry

0

1

2

3

4

5

7

Pattern

for Table 0

000

001

010

011
100
101
110
111

Table 0
W l

AAA 0
AA 1
AB 0
A 2
BA 0
B 1

C 0
D 0

Table i
w II

BAA 0
BA 1
BB 0

B 2

CA 0
c 11
DA 0
D il

Table 2

w l!
CAA ~0
CA 1
CB C

c i2
DAA II
DA 1
DB 0
D 2

Flg~.we I, Partial deeodiag tables

For the input example given above, we first
access table 0 at entry 1, which yields the output
string AA; table 1 is then used with entry 3,
giving the output B; finally table 2 at entry 6
gives output DB.

The utterly simple decoding subroutine (for
the general case) is as follows (where S(i) denotes
the i-th block of the input stream and j is the
index of the currently used table):

Basic Decoding Algorithm
i ~ - I
j ~ O
F e p e a t

(output,/) .- r(j, s(i))
p r i n t output
i * - - i+1

u n t i l input is exhausted

As mentioned before, the choice of k is
largely governed by the machine-word structure
and the high-level language architecture. A
natural choice in most cases would be k -~ 8,
corresponding to a byte context, but k = 4 (half-
byte) or k -~ 16 (half-word) are also conceivable.

The larger is k, the greater is the number of
characters that can be decoded in a single itera-
tion, thus transferring a substantial part of the
decoding time to the preprocessing stage. The
size of the tables however grows exponentially
with k, and with every entry occupying (for k -~
8) 2 to 9 bytes, each table may require 1-2K
bytes of internal memory. With an alphabet of
20 to 30 characters, these storage requirements
may be prohibitive. We now develop an approach
that can help reducing the number of required
tables and their size.

3. B i n a r y F o r e s t s R e d u c i n g t h e
N u m b e r o f T a b l e s

The storage space needed by the partial
decoding tables can be reduced by relaxing some-
what the approach of the previous section, and
using the conventional Hn~man decoding algo-
rithm no more than once for every block, still
processing only k-bit blocks. This 'is done
by redefining the tables and adding new data-
structures.

Let us suppose, just for a moment, that
after deciphering a given block B of the in-
put that contains a "remainder ~ P (which is
a prefix of a certain H-code), we are somehow
able to determine the correct SUffLX of P and its
length l, and accordingly its corresponding en-
coded character. More precisely, since an H-code
can extend into more than two blocks, I will be
the length of the sufllx of P in the next k-bit
block which contains also other H-codes, hence
0 < I < k. In the next iteration (decoding of
the next k-bit block which was not yet entirely
deciphered), table number I will be used, which
is similar to table 0, but ignores the first l bits
of the corresponding entry, instead of prefLv./ng
P to this entry as in section 2.

Therefore the number of tables reduces
from N - 1 (about 30 in a typical natural-
language case) to only k (8 in a typical byte con-
text), where entry i in table l, 0 _~ I < k, con-
tains the decoding of the k - l rightmost bits
of the binary representation of i. It is clear,
however, that table 1 contains two exactly equal
halves, and in general table l (0 < I < k) con-
sists of 2 t identical parts. Retaining then in each
table only the first 2 ~-t entries, we are able to
compress the needed k tables into the size of only
2 tables. The entries of the tables are again of

124

the form (W,.f); note however that j is not an
index to the next table, but an identifier of the
remainder P; it is only after finding the correct
suifix of P and its length I that we can access the
right table i.

For the same example as before one ob-
tains the tables of figure 2, where table t decodes
the bit-strings given in 'Pattern', but ignoring
the ~ leftmost bits, ~ -~ 0, 1, 2, and l ~ 0, 1, 2
corresponds respectively to the proper prefixes
A, 1, 11.

Entry Pattern

for Table 0
0 000

1 001

2 010

3 011

4 100

5 101

O 110
7 111

Table 0
W l

AAA 0
A.A 1
AB 0
A 2
B.A. 0
B 1

C 0
D 0

Table 1

W l
AA 0
A 1
B 0

2

Table 2
W f

A 0
1

Figure 2s The Sub.Stri=g Trar~el~e Tables

The algorithm will be completed if we can
find a method to identify the H-code correspond-
ing to the remainder of a given input block, using
of course the following input block(s}. We intro-
duce the method through an example.

o i

o i

c o

Flgus.v 8s The Hnffmajl 'n'ee H

Figure 3 shows a typical Hllffman t ree for
an alphabet L of N ~ 7 characters. For every
internal node, the edge pointing to the left son is

labelled 0, the one to the right son is labelled 1;
the root contains A; every other node v contains a
binary string which is obtained by concatenat ing
the labels of the edges on the pa th from the root
to v. The strings in the leaves are the Huff:man
codes of the characters in L.

.Assume now k -~ 8 and consider the follow-
ing ~,djacent blocks of input: 00101101 00101101.
The first block is decoded into the string BE and
the remainder P ~ 01. Starting at the internal
node containing 01 and following the first bits of
the following block, we get the H-code C, and
length I ~ 2 for the sni~x of P, so that table
2 will be used when decoding the next block; ig-
noring the first 2 bits, this table translates the
binary string 101101.

For the general case, let us for simplicity
first assume tha t the depth of H , which is the
length of the longest H-code, is bounded by k.
Given the non-empty remainder P of the current
input block, we must access the internal node
corresponding to P , proceed downwards turning
left (0) or right (1) as indicated by the first few
bits of the next /c-bit block, until we reach a
leaf. This leaf contains the next character of the
output . The number of levels passed is the index
of the table to be used in the next iteration.

Our goal is to simulate this procedure
without having to follow a ~bit-traversal ~ of the
tree. The algorithm we propose in the sequel uses
a binary forest instead of the original Huffman
tree H. For the sake of clarity, the construction
of the forest is described in two steps.

First, replace H by N- 2 smaller trees Hi,
which are induced by the proper sub-trees rooted
at the internal nodes of H, and correspond to all
non-empty proper prefixes of the H-codes. The
nodes of the forest contain binary strings: A for
the roots, and for each other node v, similarly
to the Huffman tree, a string obtained by con-
catenating the labels of the edges on the path
from the root to v, but padded at the right by
zeroes so as to fill a k-bit block. The string in
node v is denoted by VAL(v). Figure 4 depicts
the forest obtained from the tree of our example.
where the pointer to each tree is symbolized by
the corresponding proper prefix.

125

Flgu.Fe 41 Forest for Proper Prefixes

The idea is that the identifier of the
remainder in an entry of the tables described
above is in fact a pointer to the corresponding
tree. The traversal of this tree is guided by the
bits of the next k-bit block of the input, which
Can directly be compared with the contents of the
nodes of the tree.

Consider now also the possibility of long H-
codes, which extend over several blocks. They
correspond to long paths so that the depth of
some trees in the forest may exceed k. During
the traversal of a tree, passing from one level
to the next lowest one is equivalent to advanc-
ing one bit in the input string. Hence when the
depth exceeds k, all the bits of the current k-bit
block were used, and we pass to the next block.
Therefore the above definition of VAL(v) applies
only to nodes on levels up to k; this definition is
generalized to any node by: VAL(v) for a node v
on level j , with ik ~ j ~ (i + 1)k, i ~ 0, is the
concatenation of the labels on the edges on the
path from level ~k to v.

In the second step, we compress the forest
as could have been done with any Hllt~man tree.
In such trees, every node has degree 0 or 2, i.e.
they appear in pairs of brothers (except the root).
For a pair of brother-nodes (a, b), VAL(a) and

VAL(b) differ only in the j - th bit, where j is the
level of the pair (here and in what follows, the
level of the root of a tree is 0), or more precisely,
j ~ (leve l - 1) (mod k) + 1. In the compressed
tree, every pair is represented by an unique node
containing the VAL of the right node of the pair,
the new root is the node obtained from the only
pair in level 1, and the tree structure is induced
by the non-compressed tree. Thus a tree of l
nodes shrinks now to (l - 1)/2 nodes. Figure 5 is
the compressed form of the forest of figure 4.

F ~ e $1 The Compressed Forest

After accessing one of the trees, the VAL
of its root is compared with the next k-hit block
B. If B is smaller, it must start with 0 and
we turn left; if B is greater or equal, it must
start with 1 and we turn right. This leads to the
modified algorithm below. Notations are like be-
fore, ROOT(t) points to the t-th tree of the forest,
every node has 3 fields: VAL, a k-bit value, LEFT
and RIGHT each of which is either a pointer to
the next level or contains a character of the al-
phabet. When accessing table j , the index is
taken modulo the size of the table, which is 2 ~- i

Revised Decoding Algorithm
i* -1
j~-O
repeat

(output, tree-nbr) 4-- T(j, S(i) mod 2 ~-y)
pr in t output
i 4 - . - i + l
j ~ O
if' tree-nbr y~ 0 t h e n

TRAVERSE (ROOT(tree-nbr))
until input is exhausted

126

where the procedure TRAVERSE is deRned by

TRAVERSE (node)
r e p e a t

if S(i) < VAL(node} t h e n
node ~- LEFT(node)

else
node 4- RIGHT(node)

if node is a character C them print C
$- - . /+1

j is the number of bits
in S(i} which are 'used up'

i f j ~ k t h e n
i*-O
i* '- i+l

until a character was printed
e n d

To evaluate the number of comparisons in
the tree, let us suppose that the letters of the
alphabet L appear with probabilities Pi, and that
the corresponding H-codes c; have length Ii, 1 <
i < N. The weighted average length is denoted
by WAL = ~ Pdi. One may assume that the
probability of H-code c~ being the last in a/c-bit
block is proportional to Pdi, and that for a given
H-code, each bit-position has equal chance to be
the last in the block. Hence for each k-bit block,
the average number of comparisons, ANC, in the
forest (the average length of the sUffLX of the H-
code which was split by the "border" of the k-bit
block) is given by

t~
ANC- 1

- WWgl(EP' ' 1).

An obvious upper bound for ANC is 2!(max{ li } -
1), but generally ANC is not much larger than
~ (W A L - 1) (see section 5 for numerical ex-
amples).

Any node ~ of the original (compressed)
Huffman tree H' generates several nodes in the
forest, the number of which is equal to the level
of v in H ~. Hence the space needed to store the
forest depends on the form of H l, thus on the
frequency distribution. The extreme cases are:

a. A degenerated tree with, e.g., none of the
LEFT-fields serving as a pointer; such a tree
is obtained by a super-increasing.sequence of
frequencies fi, with fi+t _> ~ } - 1 fY, i =
1 , . . . , N - 1. The corresponding forest has

exactly one tree with ~ nodes for 1 < i _<
_N - 2, so that the total number of nodes is
O(N~).

b. A full binary tree, obtained by an alphabet
of N -~- 2 t characters all of which appear
with equal probability. There are 2 y nodes
on level jj 0 < j < t, in the compressed
Huffman tree, thus the number of nodes in

t - -1 the forest is ~ i - - i]2i < N log 2 N.

Therefore the space needed is between
O(.N'logN) and O(N 2) which is reasonable in
most practical applications.

If one agrees to abandon the optimality of
the Hw~m~n tree, it is possible to keep the space
of the forest bounded by O(NlogN), even for
the worst distribution. This can be done by
imposing a maximal length of K = O(logN)
to the codewords. If K does not exceed the
block-size k, the decoding algorithm can even
be slightly simplified, since in the procedure
TRAVERSE there is no need to check if the end
of the block was reached. An other advantage of
bounding the depth of the H-ffman tree is that
this tends to lengthen the shortest H-code. Since
the number of characters stored at each entry
in the partial-decoding tables is up to 1 + [(k -
1)/a J, where s is the length of the shortest H-
code, this can reduce the space required to store
each table. An algorithm for the construction
of an optimal tree with bounded depth can for
example be found in [3].

4 . H u f f m a n C o d e s w i t h R a d i x r > 2

The number of tables can also be reduced
by the following simple variants which yield lower
compression factors than the methods described
above. Let us apply the Huffman algorithm with
radix r, r > 2, the details of which can be
found in H-ffman's original paper [1]. l.n the cor-
responding r-ary tree, every internal node has r
sons, except perhaps one on the next-to-lowest
level of the tree which has between 2 and r sons.
If we choose r = 2 l, we can encode the alphabet
in a •st stage using r different symbols; then
every symbol is replaced by a binary code of l
bits. If in addition l divides k, the "borders"
of the k-bit blocks never split any /-bit code.
Hence in the partial-decoding tables, the possible
remainders are sequences of one or more r-ary

127

symbols. There is therefore again a correspon-
dence between the possible remainders and the
internal nodes of the r -a ry Hutfman tree, only
t ha t their number now decreased to r(n - 1) / (r -
1)]. Moreover, there may be some savings in
the space needed for a specific table. As we saw
before, the space for each table depends on the
length a of the shortest H-code, so this can be k
wi th the b inary algori thm when s = 1, but at
most rk/2] in the 4-ary case.

Due to the restrict ions on the choice of r ,
there are only few possible values. For example,
for k -~- 8, one could use a qua te rnary code (r
22), where every code-word has an even number
of bits and the number of tables is reduced by
a factor of 3, or a hexadecimal code (r ~- 24),
where the code-word length is a multiple of 4 and
the number of tables is divided by 15.

Referr ing to the Hutfman tree given in
figure 3, suppose t h a t a let ter corresponding to a
leaf on level I appears wi th probabi l i ty 2 - : , then
the corresponding 22-ary tree is given in figure
6. Note t ha t the only proper prefixes of even

length are A and 00, so that the number of tables
dropped f rom 6 to 2.

8 £

FIEure fls The
o c

Qmstern,u7 HulFmsn Tree

However, with increasing r, compression
will get worse, so t ha t the right t rade-off must
be chosen according to the desired application.

5 . E x a m p l e s a n d E x p e r i m e n t s

The performance of the proposed methods
was evaluated for four different applications,
two theoret ical %xtreme-case ~ distr ibutions and
two real-life cases dealing with natura l - language
databases:

average length
time uaits / letter

DGT nbr of tables
tree-nodes

t o t a l nbr of bytes
average length

time units / letter
FBT nbr of tables

tree-nodes
t o t a l nbr of bytes

average length
time units / letter

English nbr off tables
tree-nodes

t o t a l nbr of bytes
&verage length

time units / letter
Hebrew nbr of tables

tree-nodes
t o t a l nbr of bytes

Standard Partial With L Bounded Quster- Hexa,.
Huffman Decoding Binary Code nary decimal

Tree Tables Forest Length C o d e C o d e

2 .000 2 . 0 0 0 2 . 0 0 0 2 .266 2 . 2 8 6 4 .000

2 .000 0 . 2 5 0 0 .5 0 . 5 8 4 0 . 2 8 5 0 .5

- - 31 2 2 11 3

31 -- 465 173 -- --

02 71424 5491 4615 1 4 0 8 0 2304
5 5 5 5 5 . 3 7 5 6 .25'

5 0 . 0 2 5 1 .667 1 .667 0 . 6 7 2 0 .781

-- 31 2 2 11 3

31 -- 98 98 - - - -

62 23040 1314 1314 8448 2304
4.185 4.185 4.185 4.191 4 . 2 8 5 4.459
4.185 0.523 1.285 1.286 0 . 5 3 6 0 .557

-- 25 2 2 9 2

25 -- 93 80 -- --
50 25600 2251 2239 11520 1536

4.285 4.285 4.285 4.289 4 . 3 5 3 4.624
4.285 0.536 1.438 1.438 0.544 0.578

-- 29 2 2 10 2

20 -- 112 111 -- --

58 37120 2586 2553 12800 1536

Table ls Ezperim~t¢,l resulto

128

1. A degenerated tree (DGT) obtained from an
alphabet of 32 letters which appear with
probabilities Pl ~ 2-# for 1 < i < 31 and
P32 -~- 2 - 3 1 .

2. A full binary tree (FBT) obtained from an
alphabet of 32 letters with uniform distribu-
tion Pl ~ 2 -5 for 1 <~ i <~ 32.

3. The distribution of the 26 characters in an
English text of 100,000 words chosen from
many different sources, as given by Heaps [4]
(pp. 199-200).

4. The distribution of 30 Hebrew letters
(including apostrophes and blank} as com-
puted from the data base of the Responsa
Retrieval Project (see for example [5]) of
about 40 million Hebrew and Aramaic words.

Six of the methods detailed above were ap-
plied for these cases. First the standard Huff:man
Code (with compressed tree) was tested. The
maximal length of an H-code turned out to be
31 for DGT, 5 for FBT, 10 for English and 9 for
Hebrew. Choosing k ---- 8, the k-bit blocks ap-
proach was then applied, first with the partial-
decoding tables (with N - 1 tables), and then
with the binary forest variant. Obviously the
three methods give, by definition, the same op-
timal compression ratio. Three more methods
were now tested, which give reduction in storage
requirements at the cost of a lower compres-
sion ratio: the bounded code-length approach
(limiting the length of H-codes to 8), the quater-
nary Hut~man code and the hexadecimal one.

The results are presented in Table 1. For
each variant and each example, the first line gives
the average length of an H-code (WAL) in bits.

In order to compare the time-complexity of
the different variants, we count both an access to
a table and a comparison in a tree as one time-
unit. The lines headed "time-units / letter" give
the average number of units needed to decipher
a single character. This is obviously equal to
WAL for the standard Huffman algorithm, and
to WAL/k for the simple approach with partial-
decoding tables. For the variant with the binary
forest the following argument is used: some bits
at the beginning of each k-bit block are decoded
using one of the trees in the forest, their number
being at the average ANC = ~((~pl/~)/WAL --
1) (see section 3). A single table access then

translates the rest of the block, except again the
last ANC bits on the average (the ~remainder~),
hence the average number of letters obtained by
this table access is (k - 2 ANC)/WAL. Therefore
the average number of time units needed for the
processing of one character is

ANC + I WAL (ANC + 1)

(k - 2 ANC)/WAL + 1 k - 2 ANC + WAL"

On our examples, the values of ANC are 1.000
for DGT, 2 for FBT, 1.699 for English and 1.888
for Hebrew.

The entries entitled "tree-nodes ~ refer to
the number of nodes in the (compressed) trees
stored in addition to the tables. The total num-
ber of bytes required to store the trees and/or
tables (last line for each of the examples in Table
1) is calculated as follows. For the standard
Hufl~man tree one needs only 2 bytes per node,
for the nodes of the forest, 3 bytes per node. The
entries of the partial-decoding tables are chosen
large enough for the longest possible sequence of
characters {one byte for each), plus one byte for
the pointer to the next table or tree. For ex-
ample, the shortest H-code for English has 3 bits,
so that at most 3 characters must be stored in
any entry, thus the total space needed by the
simple approach of the partial-decoding tables is
(3 + 1) × 2 s × 25 ~ 25600 bytes.

Summarizing the results, the different
methods should be compared with respect to four
parameters: their compression ratio, the ease of
programming, the processing time and the addi-
tional internal space. The standard H~lffman al-
gorithm is bit-oriented, whereas all the variants
refer only to bytes and are thus not only simpler,
but also considerably faster. On the other hand,
the standard algorithm needs practically no inter-
nal memory. For the variants, there is a natural
trade-off between simplicity and time on one side
and space on the other. The fastest method is
that with the partial-decoding tables, but for ex-
ample for English, one needs 25K of internal
memory. The approach with the forest is 2.5
times slower, but 90% of storage can be saved.
At the cost of loosing the optimality of the binary
Huffman code by passing to r-ary encoding with
r ~> 2, the storage requirements can be reduced
drastically for only a small increase in processing
time.

129

REFERENCES

[1] HuEman D., A method for the construc-
tion of minimum redundancy codes, Proc.
of the IRE 40 (1952) 1098--1101

[2] Even S., Graph Algorithms, Computer
Science Press, 1979.

[3] I tai A , Optimal Alphabetic Trees, SIAM
J. of Comp. 5 (1976) 9-18.

[4] Heaps P., Information Retrieval,
Computational and Theoretical Aspects,
Academic Press, 1978

[6] Choueka Y., Ftdl text systems and
Research in the Humanities, Computers
and the Humanities XIV (1980) 153-169.

130

