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’ ;'Abstr‘a(:t

. This dissertation investigates direction-adaptive transforms that adapt transform di-
rections_to localv directionality in images in order to improve the performance of image
coding. Two new direction-adaptive trans'forms'v are- proposed ‘the direction;adaptive‘
partitioned block transform (DA-PBT) and the direction-adaptive discrete Wavelet
transform (DA- DWT) together with a novel image model that facilitates theoret1cal '
. analysis of the coding performance ' . ' -

The image model is able to represent locally varylng textures in the i 1mage hence

suitable for the analysis of adaptive transforms. Using the model, theoretical analysis

- shows that significant improvements'can be expected around sharp directional fea-

. tures such as edges and lines, rendered by directional bases of the adaptive transform.

* To provide these directional bases in practice, the DA-PBT‘is proposed based on
the DCT for coding of image and video sequences. It outperforms the conventional
2D DCT in rate-distortion performance as well as visual quality.: It can also be
combined with block-based predictive coding, both directional prediction within the
image or interframe prediction for video to further improve the compression efﬁciency.
| For coding of still images, the DA-DWT is proposed based on the DWT. Although .
the directions are seleCted block-wise, using the lifting structure, ﬁlte’ring extends,
- across block boundaries such that, unlike the DA-PBT, inter-block correlation can
be exploited" and blocking artifacts are absent' in the reconstruction. At‘ low rates,
different from the ringing and checkerboard artifacts of the conventional transforms,
the DA-DWT results i in brushstroke—hke artifacts that better preserve the geometrlc

structure in the image, providing a v1sua11y more pleasing image representation.
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Chapter 1
Introduction

The quest for efficient image coding is an oh—going research effort of both theoretical
and practical interest. Among image coding techniques, transform coding is recog-
nized as one of the most successful methods, playing a cruéial role in almost all of -
the state-of-the-art image and video coding standards. This success in modern appli-
cations is in fact built upon decades of /stlidies'. In this chapter, we first review early
developments of transform cbding of images in Sec. 1.1, and in particular examine
two transforms widely adopted in practice: the discrete cosine transform (DCT) and
the discrete wavelet transform (DWT). In two dimensions, the DCT and the DWT
are not able to efficiently represent directional image features not aligned vertically
or horizontélly, due to the lack of direcfidnal bases in such orientations. In Sec. 1.2,
we review works on directional transforms that provide these directional bases. The
directional transforms are very effective in image processing tasks, however, their
performance for image cbding is rather unsatisfactory. Another group of transforrﬁs
that adapt the choice of directional bases according to local directidnality in images
is presented in Sec. 1.3. These direction-adaptive transforms can achieve substan-
tial improvement in coding performance, both objectively and subjectively, over the
conventional non-directional transforms, and they constitute the main theme of this
dissertation. A summary of the research contributions in the dissertation is provided

in Sec. 1.4, and the organization of the remaining chapters is described in Sec. 1.5. |



CHAPTER 1. INTRODUCTION - o 2

1.1 Transfbrm Coding of Images

A géneral framework of transform coding cdnsists of three steps:> an iinveftible”lin‘ear
transformaﬁion’that converts a vector of source samples into a vector of coefficients, in-
dependent quantization optimized for each scalar coefficient, and entropy coding that
maps the quantization indices into a bitstream. To reconstruct the source samples,
the bitstréam' is first decoded losslessly to obtain the quantization indices followed
by inverse quantization that recovers the coefficients, poss1bly with loss in ﬁdehty,
and ﬁnally the inverse transform. ThlS framework d1v1des the challenglng task of
~ designing optimal codes for the source into a sequencevof three simpler steps. By
,ﬁrst exploiting'the correlation among the source samples with the linear transform,
‘scalar quantization and simple entropy coding may be applied to the ‘decbrrélated ’
coefﬁc1ents without 51gn1ﬁcant loss in coding performance [88]. - o
- Among all linear transforms with the same dimension, the Karhunen Loéve Trans-
form (KLT) generates uncorrelated coefficients for a given source and achieves max- |
imum energy compaction by packing the most energy in any given number of coeffi-
cients; To be 'speciﬁc‘, if in the inverse transform only a given number of coefficients
‘with the largest magnitude are kept and the remaining are set to zero, the KLT is
the transform with the minimum mean-squared-error (MSE) distortion in the recon-
struction [14,106]. Furthermore, for source coding, assuming jointly Gaussian source
samples and independent quantization and entropy coding of each scalar coefficient
at high rates, the KLT achi‘evezs the minimum MSE distortidn in the reconstruction
“among all orthogonal transforms at the same rate [88,106]. ] |
Exploiting the energy cdmpaction property of the KLT, Kramer and Mathews
[1 1'7] first developed a system for the transmission of highly-correlated continuous-
time speech signals. Instead of sending the Wholé set of signals, only a few linear
combinations of the signals computed based on the KLT are transmitted, achieving
bandwidth reduction with a prescribed ﬁ‘delity. For discrete-time signals, Huang and
Schultheiss [100,101] first proposed the aforementioned transform coding framework,
a‘nalyzed'the‘ performance assuming jointly Gaussian.source samples and fixed-rate

scalar quantization, and concluded that the KLT is optimal for the task. Despite its



CHAPTER 1. INTRODUCTION 3

theoretical optimality, in practice the KLT of a glven source is generally difficult to
compute and implement.

For practical coding systems, Severa.l transforms designed to apprdximate the per-
formance of the KLT with efficient implementa.tion have béen proposed. For instance,
the Hadamard transform was proposed for coding of speech signals [45,86]. Transform
coding of images was first proposed by-Andre\_&s and Pratt [6] using fast implemen-
- tation of the discrete Fourier transform (DFT) [41,43], a.pplied to the ent'ire'ima.gev in
a separable fashion, i.e., applying 1-D transforms vertlca.lly along columns of image
samples followed by further processing of the resulting coefﬁments with horizontal 1-D
transforms along rows of the coefficients. The authors later adopted the Hadamard
“transform [7,156], again applied as a separable transform to 2-D images. Instead

of transforming the entire image, transform coding can be applied to image blocks

‘ lowering the complexity of the transform and allowing more flexibility in quantization

and entropy coding. For example, the method presented in [5] applies the DFT to

image blocks composed of 16 x 16 samples and adaptively selects quantlzatlon accu-

racies for different types of blocks. The performance of three block transforms, the
KLT, the DFT and the Hadamard transform, is aﬁalyzéd and compared in [98]. The

Slant transform was introducéd in [69] and was later extended to use a fast construc-

tion [155], demonstrating imprdved‘performa.nce over the DFT and the Hadamard _
transform. Detailed reviews of early developments of transform image coding can be
found in [37,105, 143, 208]. | | |

1.1.1 Discrete Cosine Transform

Since its introduction in [2], the DCT has become the main focus of transform coding
of image blocks for its ability to better approximate the KLT for smooth regions in
images than the previously proposed block transforms, observed both from experi-
ments [160] and via theoretical justification [38,99]. For image blocks, the DCT is
applied as a separable 2-D transform, posSibly with fast implementation [34,120]. i
The 64 basis functions of the 8 x 8 DCT are shown in Fig. 1.1-(3.). Each basis func-

tion is associated with a DCT coefficient, representing an image block as a linear



CHAPTER 1. INTRODUCTION | ! 4

o
=

S

Figure 1.1: (a) Basis functions of the 8 x 8 DCT, (b) basis functions of one level of
the separable 2-D DWT (forward transform) using the 9/7 filter pair.

- combination of the bases. The DCT is adopted as the core of the J PEG image coding
standard, which was initiated in 1986 and issued in 1992 [109,150,198,199].
‘ r/l’he DCT is also widely adopted in the hybrid coding framework for images and
image sequences. In hybrid cbdihg of images [97], block transforms are first ap-
plied to the image and the transform coefficients are encoded with DPvCM, i.e., using
| prediction generated from the reconstruction of the corresponding coefficients in pré—
viously encoded blocks. For image sequences, the predictrion Signal can be derived
from perviously encoded images in the sequence to further exploit the temporal cor-
relation [165]. In [107], motion-compensated interframe prediction is incorporated
into the DPCM step of hybrid coding to better explore the temporal redundancy.
The authors have also suggested an alternative structure of hybrid coding that first
performs the DPCM step, i.e., motionécompensated prediction, followed by transform
coding of the prediction residual. This structure has become the common framework
for most video coding standards, for instance, H.263 [162], H.263+ [78], and most
recently H.264 [206], all using the DCT or its simplified variant.
Despite its ability to decorrelate samples in image blocks, as a block transform,
the DCT cannot exploit the correlation across block boundaries. Additionally, at
lower rates, independent processing. of image blocks creates blocking artifact§ that

can only be partially mitigated with post-processing algorithms [172], substahtially
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deteriorating visual quality. To-overcome these limitations, based on the DCT, Malvar
and Staelin proposed the lapped transform [136-139] that operates on overlapped
blocks while overall remaining a critically sampled transform, i.e., generating the
~ same number of coefficients as the number of samplesv in the image. The work in
[187] further shows that a large family of the lapped transforms can be constructed -
by adding simple pre-processing and post- processmg components to the DCT-based
framework with disjoint blocks. This approach is adopted in HD Photo [176], a \
recently developed image coding system for applications in digitarl’photography.

1.1.2 | Discrete Wavelet Transform ,

Another image coding technlque free from blockmg artifacts is subband coding [195,
197, 203 209], also conforming with the transform codlng framework In subband
coding, the transform is implemented through a set of ﬁlterlng and subsamphng
procedures applied to the entire image. The set of filters is d‘e81gned‘ to have approx-
imately non—overlapping' frequency responses, hence decomposing the source samples
into uncorrelated frequency components, and subsampling enables a criticelly sam-
pled transform. In this regard, block transforms such as the DCT can be considered
as a special class of subband transforms, with the support of the filters, i.e., the bases,
limited within a block. For general subband transforms, the filters are constructed
with certain constraints such that the source samples can be perfectlyvreconstructed. |
from the coefficients by another set of upsampling and filtering operations, where the
set of filters used in the forward and the inverse transform may be different, leading
to a biorthogonal transform [188]. '

The discrete wavelet transform (DWT) [8,9,124,135] is also a special case of
subband transforms. The filters used in the DWT are typically designed based on
certain smoothness constraints [42,46,134]. The DWT decorhposes the source into
a low-pass (L) and a high-pass (H ) subband. In two dimensions, the fseparable 2-D
DWT leads to four subbands, LL, LH, HL and H H, in one level of the 2-D transform. |
The basis functions of the separable 2-D DWT using the popular 9/7 filter pair [42,47]
are shown in Fig. 1.1-(b). They correspond to the subband’ filters resulting in the
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four subbands in the forward transform. The décomposition can be continued by
recursively applying the process to the subsampled low-resolution image, i.e., the LL -
subband, providing a critically sampled yet multi-resolution representation. | :
To encode wavelet coefficients, Shapiro proposed the EZW algorithm [171] that

exploits the remaining correlation across resolutions, and reported rate-distortion re-
sults outperforming than the JPEG standard. More 1mportant1y, EZW generates an
embedded bltstream i.e., different qualities of the reconstruction can -be obtained |
f,by,truncatlng the bitstream at different lengths. The performance of embedded. en-:
tropy coding have been further improved in, for instahée, [166] and [183]. In [179], -
‘Sweldens showed that the DWT can be implemented using the lifting structure. By
factoring the DWT into pairs of lifting steps, the Hfting structure enables an effi-
‘cient constructlon of the DWT and fac1htates the design of a new varlety of wavelet
-~ filters [16, 47] | |

| Because'of the absence of 'blocking artifacts, multi-resolution representation and
superibr compression performance, the separable 2-D DWT has been adopted in the
JPEG2000 image coding standard defined in 2000‘[11,0], which not only'outperfo\r‘m‘s
JPEG in compression performance but also provides more functionalities [36,175,185].
As a side remark, the performance of DCT-based image coding has been greatly -
improved after thé introduction of the JPEG standard. For example, an extension
of H.264 using the hybrid coding principle for still images [141] and other schemes
using the lapped transform with more efficient embedded entropy codlng [170, 176]
- have shown performance comparable to JPEG2000 [48]

1.2 Directional Transforms

" Due tb the separable structure that constructs a 2-D transform by cascading a 1-D
vertical transform with a 1-D horizontal transform, the basis functions of the 2-D
‘ DCT and the separable 2-D DWT consist of vertical, horizontal, and checkerboard -
patterns, as shown in Fig. 1.1. Because images are represented as linear combinations _
of these bases, the lack of bases aligned with other oblique directions hinders an

| efficient representation of directional image features, e.g., edges and lines, in such
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orientations. , ' '_

It is well recognized that the receptive fields of simple cells in mammalian visual
cortex are band-pass and oriented [49,102,103,149]. A more _recent study {146] that
~ evaluated sparse representations of natural images led to basis images closely match-
ing the characteristics of the v1sual cells, supporting the hypothes1s that the human ‘
v1sual system has been tuned to extract essential information in a natural scene with
only a small number of active visual cells. These results also suggest that an efficient
transform for image coding should provide a directional representation. To this end,
several directional transforms that consist of directional bases other than the vertical

and horizontal direction have been proposed in the literature.

1 2.1 Steerable Pyramld

. One of the earher works is the steerable pyramld [75]. 1t is an overcomplete transform
with a redundancy factor of 53, i.e., generetu_lg 5§t1mes as many coefficients as the
image samples. The overcomplete representation contajhs bases at different resolution
scales and aligned with four directions: 0°, 45°; 90° and 135°. An unique property
of the'steereble pyramid is that the coefficients corresponding to a basis rotated to
an arbitrary orientation can be d_irectly synthesized from the pyramid representation.
‘This property enables image 'processing applications such as orientation and contour
analysis [75], stereo matching and image enhancement [174], and orientation?ihvari'ant
texture recognition [96]. Hewever, because of the large amount of data expansion in

the transform step, it is not suited for image coding.

1.2.2 Complex Wavelet Transform

The dual-tree complex wavelet transform (CWT) [113-116] is also an overcomplete
representation, with a redundancy factor of 4 in two dimensions, that achieves nearly
" shift invariance and direction selectivity. A simplified version of the duel-tree CWT,
- referred to as the real oriented 2-D dual-tree transform [11], achieves only direction
selectivity vwith a smaller revdundancy factor of 2. Using the non-redundant DWT

“the energy in high—frequencyv patterns oriented at 45° and that oriented at 135° are
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captured together in the HH ' subhand, as suggested by the checkerboard »pattern in

. the HH basis shown in Fig. 1.1-(b), nvhereas they are contained in separate subbands

us_ing the CWT or the simplified real transform. The dual-tree CWT has'been applied
to image denoising, geometry estlmation and displacement esti‘mation.‘ Agai’n, due to

- the redundancy in the transform domain, application to image coding has not been
1nvest1gated The mapplng-based CWT later proposed in [70-72] constructs the CWT

by first mapping the source onto a complex function space followed by applying the

* DWT in the complex space. By controlhng the redundancy in the mapprng stage,

a cr1tlcally sampled and directional CWT can be obtained. ‘However, image coding '

performance using the resulting non-redundant transform has not been studied.

1.2.3 Ridgelet Transform '

' Candes and Donoho proposed a continuous-space image representatlon named rrdgelets '
,[17 20 63, 64] that first maps a line s1ngular1ty along an arbitrary orientation in the
1mage into a point singularity with the Radon transform [50] The point smgularlty in

“the Radon domain can then be effectwely represented by the 1-D wavelet transform.
The finite rldgelet transform (FRIT) [56,58,61] further extended the concept to work
on discrete-space i 1mage samples by smartly combining the overcomplete finite Radon
transform [12,142] and the 1-D DWT to produce a critically sampled transform. Nu-
merical results in [61] show that for a synthetic image containing a straight edge the

| FRIT outperforms the DWT in terms of nonlinear approxrmatron i.e., resulting in

" a smaller MSE in the reconstruction if only a glven number of coefficients with the

largest magnitude are kept and others set to zero in the inverse transform [134,196].

Speciﬁcally, for thislmage when less than 1% of the largest coefficients are retained,

the MSE from the FRIT is less than half of that from the DWT. However, no actual |

image codlng result is provided.
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1.2.4 Curvelet Transform

The curvelet transform [19] was also devéloped by Candés and Donoho initially in the -
continuous space. Incorporating ridgelets as a component step, the curvelet trans-
form approximately partitions the frequency space in polar coordinates both radially
and angularly, thus achieving directional selectivity. The discretg:—épace implemen-
‘tation of the Curvelet transform [65,178], an ow}ercomplete representation, shows its
effectiveness in image denoising. 'Further developments of the curvelet transform not _
using ridgelets are discussed both in the continuous space [21-23] and in the discrete
space [18]. Nonlinear approximation performance for synthetic images containing
- smooth curves indicates that the curvelet transform is superior to DWT for this class

of images.

.1.2.5 Contourlet Transform

'The directional filter bank proposed in [10] approximately partitions the frequency
spéce into wedge—shaped directional subbands. The reéulting transform is critically‘ ‘
- sampled and allows perfect recon‘struction, both desirable prdperties for image coding.
- However, the low-frequency energy at the center of the frequenéy space is spread into

the directional subbands, hampering energy compactiéri and making it less favorable
| for compression. The contourlet transform [57,59,60,62] solves this problem by first
constructing a Laplacian pyramid [15] and applying the directional filter bank to the
high-pass images in the pyramid, resulting in a multi-resolution and multi-direction
representation. However, the solution at the same time generates an overcomplete
transform with a redundahcy factor of % from the Laplacian pyramid. Critiéally
sampled versions of the contoﬁrlet transform have also been prdposed [132,144,221].
The works in [132] and [144] do not include practical applications, whereas [221]
reports better nonlinear approximation performance than the overcomplete contourlet
and the DWT. '
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1.3 Directioyn-Adaptive 'I‘ransforms

In [19], it has been demonstrated theoretically that for images containing smooth
curves a non—adapti\}e direétional representation can approach the nonlinear approx-
imation performance of adaptive directional representations. However, .in practice,'
non-adaptive directional transforms such as those discussed in Sec.- 1.2 have not been
able to produce rate-distortion image coding results that are generally better than
non-directional transforms, e.g., the 2D DCT and the 2-D DWT, primar‘ily due to
the redundant representation and lack of effective entropy coders. Direction-adaptive
trar;sfofms turn out to be a sﬁperior alternative. A direction-adaptive transform typ- -
ically consists of sevéral modes, each mode providing directional bases_‘d'edicated to a
certain orientation. According to the local directionality in the image, different modes
are adaptively selectéd in different image regidns at the encoder. Some schemes use
forward adaptation such that the mode selections need to be signaled to the decoder
as side information. For others using backward adaptation, these selections can be re-
covered at the decoder without any side information. As long as the transform in each
mo'de‘ is critically sampled, so is the overall adaptive transform. “Additionally, a con-
ventional non-directional transform can be incorporated as a non—difectional mode,
handling regions with no Conspicubus directionality. Hence, wifh a proper design,
the performance of an adaptive transform should never be inferior to the constituent -

non-directional transform.

1.3.1 Indage Coding using Adaptive 'I‘I_'ansforms, o |

~ The fundamental framework of image coding using adaptive tfansfqrms wés intfo-
duced by Tasto and Wintz {180, 181]. An image is first divided iﬁto disjoint blocks,
and the blocks are clustered into groups, each group coded with a transform and the
‘associated quantization and entropy coding scheme that are adapted to the compo-
nent blocks. Assuming a Gaussian source and given the number of groups and the
size of each group, Tasto and Wintz presented an iterative algorithm that, at high
rates, optimizes the clustering, the transforms and the associated rate allocation of

the Gaussian coefficients. The rate overhead for the side information that signals
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the mapping between the blocks and the groups, i.e., the: mode selections, is taken
into account in the algorithm. The resulting optimal transforms are the KLTs of the
groups, and the KL T bases are 1nherently directional for groups contalmng directional
B image features.

Effros, Chou and Gray [66, 67] generahzed the framework as a code de51gn prob-
lem for image coding systems, not constrained to Gaussian sources and the high-rate
assumption, and additionally OptlIIllZlIlg the size of each group. In their experiments,
64 modes, each specifying a KLT and the associated rate allocation, are trained from
one image and then applied to code another image using forward adaptation, demon-
strating a substantial gain over a JPEG-like non-adaptive approach. As described
in [89-91], adaptlve transforms based on the KLT can also be achleved with back-

ward adaptation.

Despite their optlmahty, the KLTs generally do not have an efficient 1mplementa— o

tion. It may be more advantageous to design the modes ,w1th suboptimal transforms
that can be éasﬂy constructed, such as the DCT and the DWT. One such example is
* the variable blocksize DCT that further divides a block into smaller partitions, which
are square sub-blocks [33,189,190] or can be rectangular [54,55], and the DCT is sepa-
rately applied within each partition. Different partitioning strﬁctures are selected for
different blocks based on the local image content. Each structure corresponds to one
mode of the overall adaptive transform and the mode selections are signaled as side
~ information. A rate—dlstortlon optimized framework was proposed in [158] to select
“the best partiti_ohin‘g for every block, and the framework was also applied to locally
adapt the decomposition structures of the DWT [159]. These adaptive transforms

are, however, not directional.

1.3.2 DCT-based Direction-Adaptive Transforms

The work in [76, 218, 219] and our own approach in [27,‘2‘9] construct directional
modes in direction-adaptive transforms by first performing one set of the 1-D DCTs,
possibly with different lengths, alorig a certain orientation to directionally decorrelate

the samples in an image block, followed by another supplementary set of the 1-D DCT's
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to exploit the remaining correlation in other directions. A similar approach [217] uses
a DCT-like non-directional mode and directional modes constructed with separable
transforms customized from training data. Directional modes can also be obtained by
permuting the block samples such that the permuted directional features are aligne.d
either vertically or horizontally before applying a non-directional DCT-like transform
[163]. Moreovér, the lifting structure may be used for fast implementation of the DCT
[126]. Using lifting, directional modes based on the DCT can be constructed, with-
directional bases extending across block boundaries [214], resulting in an adaptive
transform that is no longer a block transform. The sanie technique can also be
- adopted to implement direction-adaptive lapped transforms [215]. All these'adaptive

transforms use forward adaptation.

1.3.3 DWT-based Direction-Adaptive Transforms

AAn early work of DWT-based direction-adaptive transforms is presented in [184].
An image is divided into blocks. Each block ié then sheared through a reversible
resampling filter such that directional features in the sheared block are oriented either
vertically or horizontally. The 2-D DWT is applied to the sheared bloCk and thus
in effect provides directional bases via forward adaptation. The more recent work
of the directionlets [191-194] constructs its directional modes by adapting both the
wavelet filtering direction and the subsampling grid to the directionality in image
" blocks without resampling. The two approaches, among others [151,200], share the
~ same limitation, i.e., independent processing of image blocks that fails to exploit the
correlation across block boundaries and produces blocking artifacts.

The bandelets representation [153,154] does not have this limitation. The 2-D
DWT is first applied to the image, followed by a bandeletization pr0cedlife that fur-
ther removes the directional correlation in the LH, HL, and HH subbands using
forward adaptation. The LL subband remains the same as in the 2-D DWT. Block-
ing artifacts are not observed since the block-wise operations in the bandeletization
procedure are performed in the wavelet domain. However, because the procedure is

essentially post-processing of the wavelet coefficients, the energy already contained in
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the high-pass subbands can not be moved back to the low-pass subband, limiting its
“energy compaction ability. |
The lifting structure enables locally adaptive wavelet filters together with a regular

subsampling grid [179]. Using the lifting structure, several DWT-based approaches

have been developed to locally adapt the filter coefficients [13,39,40,79], or the filtering
directions {13, 80 182], such that ﬁlterlng is not performed across edges in images.
- These approaches use backward adaptation that eliminates the need for signaling
the filter selections, i.e., the mode selections, to the decoder by assuming lossless
compreséion [13] or knowledge of the quantization npise' at the encoder [40, 79,80], or

constfaining the selection process such that it can be reliably repeated at the decoder

[182]. The gain of ad'aptation‘ is limited due to these é,ssumptions and constraints. |
No significant improvement on objective quality measurements over the 2-D DWT

‘has been reported although subjective improvement has been observed.

Other approaches that also adaptively select the filtering directions via lifting

choose to explicitly signal the mode selections [52,53, 129, 200,201], Le., using forward

adaptation. Within this category, we have independently developed an approach that

combines directional lifting with quincunx subsampling [30]. It was then extended to

accommodate the case of conventional orthogonal subsampling, and to incorporate

directional lifting and the bandeletization‘procedure into an unified framework [25].

More detailed analysis of the DWT-based direction-ada_ptivé transforms using lifting
is provided in our work in [26]. Thanks to the efficient representation of the filter
selections, these approaches éda,pt to directional features more efféctively and have

demonstrated signiﬁcant objective and subjective quélity improvement for texture-

7
{
4

rich images.

1.4 Summary of Contributions

This dissertation presents theoretical analysis and practical constructions of new
direction-adaptive transforms for image coding. Some results have been published

in [25-29]. The major contributions of the dissertation are summarized below:

e A novel statistical image model is proposed to analyze the performance of
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transform coding. The model is able to represent locally‘ varying textures in
the inia.ge, hence suitable for the analysis of adaptive 'tra.nsforms.‘ Using the
model, we are able to theoretically quantify the potential improvements in im-

age cod1ng from using an adaptive transform instead of a fixed tra.nsform The |
analysis shows that there is a substantial gain for images rich of edges and
lines. For other images, significant improvements can still be expected locally
around sharp directional features, rendered by directional bases of the adaptive
transform. The model is also used to analyze the practical direction-adaptive

transforms proposed in the dissertation.

e A new direction-adaptive partitioned block transform (DA-PBT) based on the
DCT is proposed for coding of images and video sequences. At the same coding
rate, the DA-PBT outperforms the conventional 2-D DCT by more than 2dB for
images_with pronounced directional features. Since it avoids the typical ringing
and checkerboard artifacts of the 2-D DCT, subjective improvements are even
la.rger than indicated by the rate-distortion performance. The DA-PBT also
outperforms a previously proposed directional DCT while dema.ndlng less com- "
putation. The combination of the DA-PBT with directional prediction w1th1nv'
the image or interframe prediction for video is also explored, leading to further

- improvements in the performance of hybrid coding.

e A new direction-adaptive discrete wavelet tra.hsform (DA-DWT) is proposed for
coding of still ima.ges. Using the lifting structure, the DA-DWT is able to locally
adapt the filtering directions while ensuring the reversibility of the transform.
In our experiments, the DA-DWT outperfOrms the conventional 2-D DWT by
around 1 to 2dB in PSNR for typical test images,‘ and by bup to 5.1 dB for special
classes of .images, consistent with the theoretical improvement derived for the
DA-DWT using the image model. At low rates, different from the ringing and
checkerboa.rd artifacts typically observed in the 2-D DWT, the reconstruction
error of the DA-DWT exhibits brushstroke-like artifacts that better preserve

 the geometric structure in the image, providing a visually more pleasing image

representation.
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1.5 Organization

The image model is presented in Chap. 2. In Sec. 2.1, we introduce the concept of
modeling an image by a set of texture sources, each representing a region in the image.
In Sec. 2.2, we propose a clustering algorithm that for a given image optimizes the
image regions and the parameters characterizing the corresponding texture sources.
Performance analyeis based on the model is presented in Sec. 2.3.

The DA-PBT is introduced in Chap. 3. We first describe different iﬁodes of the
DA-PBT in Sec. 3.1. The ap'plicetio‘n of the DA-PBT to image coding in practice
is discussed in Sec. 3.2. The proposed transform can be combined with block-based
predietion to improve the performance of hybrid coding, as expla-ined in Sec. 3.3.
Theoretical analysis based on the image model is included in Sec. 3.4. Experimental
results demonstrating the superior ‘performance of the proposed transform are shown
in Sec. 3.5. | | , o B

The DA-DWT is discussed in Chap. 4. In Sec. 4.1, we describe how -different
modes of the DA-DWT are constructed using directional lifting. ‘A practical image
coding framework using the DA-DWT is discussed in Sec. 4.2. Theoretical analysis’
of the DA-DWT and performance evaluation using the image model are presented in
Sec. 4.3. Finally, experimenta] results demonstrating the superior perfofmance of the
DA-DWT both objectively and subjectiVely are included in Sec. 44
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V‘Statlstlcal Image Model
',"‘for Transform Codlng Analy51s

A model that captures important attributes’ of a,signal"is an essential tool to ana-
~lyze vthe”.perfor'mance of signal processing. algorithms. In this chapter, we propose
a statistical image model to study the performance of transform codingcf images
In particular using the image model we quantify the. theoretlcal performance 1m—
provement from 1ncorporat1ng transforms locally adapted to image content instead of
applying a fixed transform, further providing insights to the design of practical adap-
tive transforms for image coding. In the subSequent chapters in"this dissértation,_ the

model will also be used to analyze the performance :of the prcposed direction-adaptive

. “transforms. -

In Sec. 2.1, we introduce the concept of modelingan image by a mixture of tex-
ture sources. Each texture source is a 2-D stationary random field characterized by
a parametric aiitocorrelation function, modeling a particular texture that appears in
the image. An image is segmented into regions containing different textures, each rep-
resented by a texture source. In Sec. 2.2, we propose a clustering algorithm that for

- a given image optimizes the segmentation and the parameters characterizing the cor-
responding texture sources. Perfermance analyses based on the model are presented
in Sec. 2.3. | | :'

.16
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2.1 Image Modeling with Textliyre Sources

2.1.1 Mixture Model

Stochastic image models have long been adopted to represent images for theoretical
“analysis [104 106). These models often provide a global description of an image
using a smgle set of statistics. However, different regions in an image may have
~very different characterlstlcs. For instance, in the Monarch image shown in Fig. 2.1,
the characteristics of the high-contrast patterns in the _foregroﬁnd clearly differ from
those of the blurred backg'rouhd. Moreover, the various shapes and orientations in
the fbreground patterns also lead to distinct characteristics that cannot be easily
represente»d by a single set of statistics. To analyze locally adaptive algorithms, a
suitable model should be able to reflect these local variations. ‘
As a better alternative, a ‘mixture model represents an image as a mlxture of
multlple components, each described by a set of statistics reflecting certain local
characteristics. . The most widely adopted mixture model for images is the Gauss
mixture model where each component is a Gaussian source. The model is typically
“constructed by the expectation-maximization (EM) algorlthm or its Varlatlons using
‘the maximum-likelihood criterion [51,73], assuming that each block in the image is
in fact a sample of the Gauss mixture. Applications of the Gauss mixture model
constructed using the EM algorithm include, for instance, 2-D hidden Markov model
- (HMM) for image classification [125], image segmentation and image query [24], non-
linear prediction [220] and feature selection [119)]. -
| As shown in [4,92,95], the Gauss mixture model can also be constructed by the
Lloyd‘ algorithm [127,130]. Unlike the EM algorithm, the Lloyd algorithm does not
assume that the image blocks are samples of the Gauss mixture and only finds a set
of Gaussian components and the mapping between the blocks and the components
that minimizes the overall distortion measure. Using quantization mismatch (QM) or
minimum discrimination information (MDI)‘ as the distortion measure [4‘, 92,95], the
resulting G‘auss mixture model can be used to design robust code for image compres-

sion and has also been applied to applications in content classification [4]. Note that
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Figure 2.1: 512 x 512 8-bit grayscale images (a) Spoke, (b) Monarch, (c) Pentagon
and (d) Lena.

in the case of the MDI distortion measure, the components are 2-D recursible autore-
gressive sources [123], analogous to the 1-D case successfully used in linear predictive

coded (LPC) speech compression systems [93,94].

2.1.2 Texture Source

To study the performance of locally adaptive algorithms, in particular, adaptive trans-
forms for image coding, we propose to model an image by a mixture of texture sources.
Each texture source is itself a stationary random field representing a particular texture
that appears in the image. Any local image neighborhood is associated with a texture
source best descfibing the local statistics. Therefore, to model the performance of an
algorithm for the image, the performance in a local neighborhood can be estimated
from the analytical performance for the associated texture source. Additionally, the

image-wise performance can also be derived by averaging over all neighborhoods.
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A texture source is ﬁrst‘deﬁned as a 2-D continuous-space stationary zero-mean |
“unit-variance random field, denoted by £(p) = (p,,p,), p = = (pz, py)T € R, modehng
the corresponding texture in the scene. The scene is then converted by an imaging
~device into a d1screte—space texture source, consisting of samples of a filtered and
‘ scaled version of the contlnuous-space texture source. The ﬁlterlng operation results
from the aperture function of the imaging device that mainly accounts for the antl-
“aliasing process, and the scaling normalizes the d1screte~space random field so that it-
is also unit-variance. Consequently, the discrete-space texture source is a 2-D discrete-
space stationary zero-mean unit-variance,raridom ﬁeld, denoted by I} = t[ls, L], 1 =
(I3,1y)T € Z2. Using the discrete-space texture sources, any local i’mage neighborhood
is modeled as a 2-D segment of a realization of a texture source, scaled in intensity to
" match the actual local variance in the neighborheod atnd shifted to Iuatch‘ the local
e . , _ | o | v
Each texture source, e1ther contlnuous-space or d1screte—space, is characterlzed by .
its power spectral dens1ty (PSD) or equlvalently the autocorrelation functlon Tt is
desirable to have a simple parametric representation of the PSD and the autocorrela—
tion to facilitate the modeling process as well es the subsequent analysis. Despite the '
desired s1mp11c1ty, the parametrlzatlon should be able to describe a variety of textures
-contained in typically images. To this end, we define two classes of image textures: »
the regular textures, such as edges llnes (double edges), and stripes (periodic edges),v
and the irregular textures, accountlng for other usually’ mofe complex features. A
. texture source consists of two components representlng the two classes of textures. In
the followmg sections, we first describe a parametric formulatlon to model the class
of the irregular textures in Sec. 2.1.3, followed by the parameterlzatlon for the regular
textures in Sec. 2.1.4, both defined in the continuous space. Finally, the composition
-of the two components and the conversion from the contmuous space to the discrete

‘space are discussed in Sec. 2.1.5.
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2.1.3 Elliptic Random Field

In this section, we first consider the continuous-space irregular textures. These zero-
mean textures contain complex structures so that in any 1-D neighborhood zero-
crossings occur in a random manner. Thisvzero—crossing pattern is similar to that of |
a mean-removed random telegraph signal, a bi-level signal with the changes in level
(zero-crossing) occurring according to a Poisson prdcess [121]. It can be shown that
the autocrorrelat‘io’nvfunctionv, denoted by r(7), of a zero-mean unit-variance random
' telegraph signal can be expressed as 7(7) = exp(—2),|7|) where ), is the rate of the
underlying Poisson process. Due to this similarity, we assume that the correlation in
the irregular textures generally decays exponentially with the distance between two
points, also consistent with the exponentially décayihg function in both the isotropic
- model [147,167] and the separable model [98] widely adopted in the literature. -
| De;note the autocorrelation function of a 2-D continuous-space random field by
rg(r) = Ti5(Te, )y T = (72, 7)T € R?. Inthe isotropic model, assuming unit variance,

L

rio(rIA) = exp(— A (72 + 72)%), - 2.1)
| and in the separable model

.T:'tfp(‘rlf\ma Ay) = exp(—Az|Ts|) - exp(—Ay|7y)). (22
The contours of equal autocorrelation are circles in the isotropic model, whereas they
are rhombi in the separable model, with the diagonals aligned with the vertical and the
horizontal axes. Consequently, the former is not able to represent any directionality’
in image textures, and the latter can only describe directional textures oriented either
vertically or horizontally. To better capture the _directionaIity in the irregular téxtures,

~ we extent the isotropic model and propose the following unit-variance autocorrelation
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function:

rE(T10, Ao, o) = exp(—(A272 + N7)3), (2.32)

Ta | _ cos9ysi}n9 . o (230)
T —sind cosf ’ ,

where 0 < § < 7 and 0 < A, < A,. The autocorrelation decays eiponentially'
by exp(—Xq|7,|) along 6, and it decays at a smaller or equal rate by exp(~—Xs|7|)
along the direction orthogonal to 6. The angle 6 therefore indicates the direction of
- the largest variation in the texture. The autocorrelation along other directions also
decays exponentially at different rates such that the contours of equal autocorrelatlon
" are concentric éllipses where the minor axis ‘is aligned with 4. Additionally, the
length of the minor axis and that of the major axis ’a.re'proport'ional to A7! and
‘/\b_1 respectively. We refer to a random ﬁeld characterized by the autocorrelation
function in (2.3) as an elliptic random field, from the structure of the autocorrelation
function. The elliptic random field also generalizes the 1sotrop1c model in (2.1) since
TE(T|A) = rE(T]0, A, Ar).

| Some example realizations of elliptic random fields, i.e., continuous-space irregular
textures, are'shbwn in Fig. 2.2. These examples are geﬁerated with Ag = — 1n(0.8) fs
where f, denotes both the horizontal and the vertical sampling frequency, Ay = A, / ks,
‘with k, = 2, 8 and 32, and 6 = 0°, 22.5°, 45°, 67.5° and 90°, corresponding to
textures with"different’degrees of directionality and different orientations. The value
‘Aa = —In(0.8) f, is chosen in these examples such that along 6 the correlation between
~ two points separéted by 7. = f;1, i.e., the sampling period, equals 0.8. Recall that a
texture source models a local image neighborhood normalized by the local mean and
variance. From our observation a correlation of 0.8 between two neighboring pixels
is typical when measured in such normalized neighborhoods. This value is smaller
than the correlation around 0.95 often reported, fdr a similar set of test images, from
measurements averaging over. the entire image, normalized by the global mean and
variance .[98, 147,167]. This is because, qualitatively speaking, a seemingly‘ smooth

region observed at the image-wise scale can appear noisy, hence less correlated, when
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~ being scrutlmzed at a local scale. , o

A Denote the PSD of a 2-D contlnuous-space random field by ®z(w )) = = O (wg, wy),
w = (wg, wy)T € R From (2.3), the PSD of an elliptic random ﬁeld can be expressed
as . ' | | : :

(I)gf(wle7)‘a7)‘b) h) Ab(1+ ()\ ) + (A:) ) 2, . (243) |

(”“ )=( o9 Sme)w'.f  ew
Wp -, —sinf cosf y o

“ For an irrégular texture modeled as an‘elliptic random field, the contours of equal’
- ‘PSD are also concentric ellipses with the major axis aligned with 6. The length of

the rhajor axis and that of the minor axis are proportional to A, and Ay respectively.

2 1.4 Perlodlc-Wave Random Fleld

, In Sec. 2 1.3, for 1rregular textures we assume that in any 1-D nelghborhood zero- -

. crossings occur in a random manner, so that the correlatlon decays exponentlally with

- the distance between two points. For regular textures contalmng essentlally lines and

edges, however, this assumptlon does‘ not hold. ‘ _ .

 Consider a liné in a continuous—spaée zero-mean regular texture and a group of 1-D
heighborhoods that arerorthog.onal to the line and intersect the line. In this example,
‘there are always two zero-crossings in every nelghborhood one at each edge of the
~ line, with the same amount of separation. This fixed zero-crossing pattern can no
longer be approx1mated by a Poisson random process. Instead, we can approximate

“these neighborhoods by segments in a leD random square-wave signal, defined as

Ao, EIk:EZ s.t. 0<p+kT +€<Ts 83

(2.5)
Ay, otherwise,

g(pITsvrs) = {
where T, is the period, Ag. and A; are two intensity levels, 0 < ry < 1 determines the
~ duration of the two levels, and € is a random phase. For the above example, any 1-D

neighborhood intersecting with the line can be modeled as a segment of a random
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Figure 2.2: Elliptic random field examples: A\, = —1In(0.8)fs, Ap = As/k» where
ky, = 2, 8 and 32 from bottom to top, and 8 = 0°, 22.5°, 45°, 67.5° and 90° from left
to right. For each example, the top plot shows a realization of the continuous-space
random field, i.e., the irregular texture being modeled, and the bottom plot shows
~ the discrete-space PSD in logarithmic scale where the square region corresponds to
—m < Q, < 7 from left to right and — < , <  from bottom to top.

square-wave signal with T} close to the neighborhood size and r, selected according
to the width of the line. Similarly, a neighborhood containing only a single edge, i.e.,
a step function, is modeled as a segment of a random square-wave signal with T close
to twice the neighborhood size and 75 = 0.5 so that there is always one edge in every
segment. Modeling a neighborhood containing periodic stripes can be done in the -
same fashion. Finally, it is straightforward to show that the autocorrelation function

‘of a zero-mean unit-variance random square-wave signal also has a periodic-wave



CHAPTER 2. STATISTICAL IMAGE MODEL | | o

“Figure 2.3: Periodic-wave random field examples: K = 3, 8 = 45°, and from
left to right (ws,7s) equals (0.17f;, 0. 5), (0.17 f,,0.2), (0. 27rfs, 0.5), (0.27 f5,0.2) and
(0.37 f5,0.5). For each example, the top plot shows a realization of the continuous-
space random field, i.e., the regular texture being modeled, and the bottom plot shows
- the discrete-space PSD in logar1thm1c scale.

structure, more specifically a periodic sequence of mean-removed triangles, expressed
by '

o0,

2rg smc(krs) cos(kgTET). ~ (2.6)

res(T|Ty. 1
SS( IS? S) 1—Tsk 1 v A

Note that T55(7|Ts, 7s) = 153(7|Ts, 1 — 15). »
Based on the above discussion, we propose the following unit-variance autocorre-

lation function, in the same form as (2.6), to characterize regular textures:

T 7'|9 Wey Ts) Z'y k rs cos( kwsTa) (2.7a)
k=1 o )

- sinc(kr)?

Sk sinc(krs)?’

where 7, is defined in (2.3b), 0 < 8 < T, Wy > 0Oand 0 < 1y < % Similar to the

elliptic random fields, the tangent of the edges and lines in a regular texture ahgns

v(k,rs) = (2.7b)

~with 4. Along 9 the autocorrelation function is essentially the same as (2.6) with
Wy = T’:’ and the infinite sum approximated by the sum of the first K harmonics.
In practice, we use K = 3. Orthogonal to 8 the autocorrelation is constant since

the intensity does not change along edges. We refer to a random field characterized
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by thev autocorrelation function in (2.7) as a period-ic—wave random field, again from
the structure of the autocorrelation function. Note that the periodic-wave random |
fields enable modeling of negative autocorrelation valnes, often observed in actual

measurements around edges, which cannot be descr'ibed by the elliptic random fields.

Some example realizations of the ,periodic—wave random 'ﬁelds:, i.e., the continuous-
space regular textures, are shown in Fig. 2.3. - | '

.The PSD of a periodic-wave random field can be expressed as

DR (w0, ws,s) =D Yk, ) m(8(wa — kws)(ws) +0(wa + kw;)d(ws)),  (28)

— R . - : .
where w, and Wh are defined in (2.4b). A regular texture appears as pairs of 2-D delta’
- impulses along 6 in the PSD, accountlng for the off-center peaks frequently observed
in spectrum estimation from d1screte—space samples [148]. In practice, to facilitate

numerical evaluation in the subsequent analysis, we approx1mate 6 (wa + kw;)d (wb) |
(2.8) by 5(wa:l:kws)<5( b) * 2®L (w0, Ay, Ar), where <I> is defined in (2.4), the symbol

2r Tt

) * denotes the 2-D convolution operation, and A, 10 T fs, ie., the PSD of the '

isotropic model in (2.1) with a small Ar, scaled by - and shifted by +kuw, along f.
Correspondlngly, the autocorrelation function in (2.7) is mult1pl1ed by (70, Ar, A )
defined in (2.3). '

2.1.5 ‘Discrete—Space Texture Source
To account for textures containing both an 1rregular component and a regular com-
ponent, we define a cont1nuous—space texture source as a 2-D stationary zero—mean

‘unit- -variance random field ,comb1n1ng an elliptic random field with a perlodlc-wave

 random field:

0) = 8- (76, Aa, /\b)';l‘ (1- ﬁ‘) . rg(%lle,ws,rs), | ~ (2.9a) |
8) = - f(wlf, Ao, o) + (1 = B) - PF(w]f, ws, ), (2.9b)
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where © = {3, 6, A4, Ap,ws, 75} and 0 < @ < 1. The two components share the same
for simplicity, and there are 6 parameters in total to describe a texture source. Note
that taking a Welghted average of the two components by 3 exphcltly assumes that
~ they are uncorrelated ’

- To der1ve the dlscrete-Spaoe texture source from the continuous-space definition,
" we first consider the aperture functlon of the imaging device, denoted by h (p ) ‘and
the correspondlng frequency response, denoted by i (w) The aperture function
-accounts for all filtering operations in the device, and the ideal aperture function is
the 1deal anti-aliasing filter with a cut-off frequency at w, = +nf, and wy = xmfs,
where f, denotes the sampling frequency in both dimensions. For practical imaging .
deVices we model the aperture function as a separable filter for simplicity, i.e., ﬁa(w) |
= H, 1 (wy fo)H, 1(wy|fs). The 1-D filter ﬁa,l(w| fs) is modeled as a. r00t-raisedjcosine~
~ filter with the roll-off factor G, = 0.5 such that |H,(w|fs)| = 0 for w| > 1.5xf,
, Given ri(7|©) and ®z(w|O) in (2.9), the autocorrelation function and the PSD of
the anti-aliased source, denoted by r(7|©) and ®;;(w|O) respectively, are obtained

.',by‘»

ra(rl0) = ra(r]®) #hu(r) ¥ ha(—7),  (2102)

- p(w]O) = Ba(wl®) - (). (210b)
Note that P;(w|®) is now- band-limited since |H,(w w)| = 0 for Jwaz| or fwy| larger "

than 1.57 fs Flnally, the autocorrelation functlon of the dlscrete—space umt var1ance
texture source is obtained by '

1 - d; d

m[d|é] ;fittd;,dy|@] mrtt(fs y]@) , 1(2.11) |

and the corresponding discrete—Space PSD is

u(e?10) = t<e1"= J“v|@) | |
1 -
(0, o|@ Z Z ‘I’tt 27Tzz)fs,( — 212))fs|©).  (2.12)

Zz=~1zy=-1
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-‘Some examples of the discrete-space PSD with 3 —1lin (2. 9b) i.e., the elliptic -
- random fields, are shown in Fig. 2.2, and others with 8 = 0, i.e., the periodic-wave *
| ra.ndom fields, are shown in Fig. 2.3. Notice that hlgh frequency patterns in the

continuous-space image textures may lead to aliasing components in the discrete-

" space image samples due to the non-ideal anti-aliasing filter. These aliasing effects

_often observed in actual i images can be ca.ptured by the proposed model as shown in
Flg 22(kb—32 0 =22.5° 675°) '

2.2 Texture Source Clustering

' Hairing defined the texture sources in Sec. 2.1, two questions remain to be answered:

' ‘how to divide a given image into regions of different textures, and what are the texture -

sources best descrlblng these regions? The answers to the two questlons depend on.

each other, as we shall see in the follow1ng discussion.

2.2.1 Image Neighborhood Modeling |

Recall that, in the proposed image model, any local imege neighborhood is‘ modeled as
a 2-D segment of a realization of a particular discrete-space zero-mean unit-variance
texture source, scaled to inatch the local variance and shift)ed to mateh the local
‘mean. We do not explicitly impose any constraint on the size or the shape of the
ne1ghborhood However, it is implied that a neighborhood contalns homogeneous‘
content so that it can be well represented by a single texture source.

 To represent an image neighborhood with a texture source, we divide the image
into Lp disjeint blocks of Sp x Sp pixels. Each block is associated with a local mean

and a local variance, estimated from the image pixels in the vicinity of the block
~ and denoted by uy and o7 respectively. Each block is also associated with a texture
source, and any image neighborhood centered in the block is then modeled by this
texture source, after normalization by o}, and pp. In general, the blocksize Sp should
be kept small to reflect the loca.ll_yv vvarying statistics in the image. However, as an

example, for a 512 x 512 image and 8 x 8 blocks, there are 4096 blocks which requires
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the same number of texture sources to represent, making the model imptactical.
‘To further simplify the'mddel we consider the case that only L¢ textufe‘sources
Lc < Lp; are included to model an 1mage The Lp blocks are grouped into L¢ |
clusters. Each cluster contains blocks located in image reglons with similar textures
and is represented by a single texture source. A clusterlng algorlthm, similar to the
Lloyd algorithm [127], is proposed to optimize both the choice of the L¢ texture
'sources and the assignments that associate each block ﬁoone of the texture sources,

as described in the following sections.

2.2.2 Cost Function

i

In this section we first define the cost function for the clustefing algorithm, analogous
_ to the distortion measure in the Lloyd algorithm [127]. For an image block, the cost
‘ between the block and a texture source reflects the modeling error from representlng
the image neighborhoods centered i in the block by the texture source.

The main purpose of the image model is to analyze the rate-distortion performance \
of transform codlng of i 1mages ina general framework. Specifically, later explalned in.
- Sec. 2.3.2, coding of the coefﬁments in a subband in a local nelghborhood is assumed

to achieve the rate-distortion function of a Gaussian memoryless source, i.e.,
1 o} . 2
Rs(\) = max{Oa‘-Q— log, T}’ Dy()\) = min{A, o7}, (2.13)

where K, and D, are the raté in bits per coefficient and the MSE distortion for coding
subband s respéctively, o2 denotes the variance of the subband and A controls the
rate-distortion trade-off [44]; Each subband can be considered as a filtered version of
the image where the filter is determined by the corresponding basis of the transform.
To model accurately the iocal rate-distortion performance of a particular subband
around a block, the actual variance of the filter dutput, hence the subband variance,
~ measured in the block should be closely approximated by the variance derived froin
the associated texture source. Consequently, for any filter corresponding to a basis
of a trans‘fo_rm' of in.terestv, a well—desivgned cost function should possess the property

that, for every block, the output variance derived from a texture source with a smaller
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(a) impulse response (b) magnitude frequency response

Figure 2.4: The set of 100 filters used in the cost function of the clustering algorithm.
In (a), gray represents magnitude 0. In (b), each square region corresponds to the
2-D discrete-space frequency —n < Q, < 7 from left to right and —7 <, < 7 from
bottom to top, and black represents magnitude 0. ‘

cost is in general closer to the measured variance.

- To come up with a cost function with this property, we consider the set of 100
filters with their impulse responses and the corresponding frequency responses shown
in Fig. 2.4-(a) and Fig. 2.4-(b) respectively. These filters correspond to 12 subsets of
the 1-D DCT bases along different directions in a maximum support of 13 x 13 pixels.
For instance, the first subset contains the bases of the 13-point DCT aligned vertically,
shown in the first column and the beginning of the second column in Fig. 2.4-(a). The
second subset contains the bases of the 5-point DCT along a direction with a slope
% = —3, shown in the second column in Fig. 2.4-(a). The set of filters is selected for
its simplicity and its ability to localize spectral components covering the entire 2-D
ffequency space with different orientations, as shown in Fig. 2.4-(b). We apply each
of these filters to the image, and denote the measured output vafiance of the i-th
filter in the b-th block by 63,1-. Similarly, denote the output variance of the i-th filter

derived from a texture source described by a parameter set © by 01.2,@. We argue that
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a texture source with Ui2|e closely approximating G4:/03 (of defined in Sec. 2.2.1),
for all 4 =0,---,99, captures the spectral structure in the vicinity of the b-th block
and therefore it is able to provide an accurate model for the output variances of
other filters, e.g., the subband variances resulting from a transform Based on this
argument, for the b-th block, we deﬁne the cost for assoc1at1ng the block with a

texture source described by © as

' 99 : :
0(8) = S (a2 *  (ofode — BV, (2.14)
P - »
where 0 < k < 2. Before discussing the choice of k, we first note that in (2.13),‘for a
~small A where ) < o? for subband s, the distortion equals X and the modeling error
in rate from using a model variance 2 instead of the actual af is proportional to
logy(62/02). For a large A where A > o2, the rate is zero and the modeling error in
distortion is 62 — o2. | | |

In (2.14),‘Wher1 k = 2 the cost is the sum of the squared normalized errors, ie.,
(0§0%6)/55; — 1. In this case, a small cost indicates that the normalized errors for
all filters in the set are small in magnitude, and thus presumably the normalized
error of the subband variance resulting from any transform basis is also small. This
ensures that, with a small ), both the distortion and the rate in (2. 13) for a subband
are accurately modeled. However, for a large subband variance, a small normalized

‘error can lead to a large non-normalized error, therefore for a large A resulting in
a significant modeling error in distortion. On the contrary, when k = 0 the cost is |
the sum of the squared non-normalized erTors, ie., of 0,49 sz - With a large A, a
small cost, hence small non-normalized errors, gives an accurate model for both the
rate and the distortion. However, for a small variance, a small non-normalized error
can still lead to a large normalized error, resulting in a substantial modeling error ih
rate with a small A. For most values of A corresponding to the typical rate-distortion
operating points for image coding in practice, A is larger than the subband variance
for some subbands and smaller for the others. As a 'compromise, we choose k=15
 from experiments such that the model rate-distortion performance best metches the

actual performance for several transforms we considered.
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To improve the accuracy of the proposed image model, we further include an ad-
ditive white-noise component associated with each block such that the iniage neigh-
'borhoods centered in the block, after normalization by the local mean and vari-
 ance, is modeled by a rahdom field characterized by the autocorrelation function
a(b)8[0, 0] + (1 — (b)) 74 [d|©] where 0 < a(b) < 1 determines the relative white-noise
“level associated with the b-th block, and r4;[d|©] denotes the discrete-space autocorre-
lation function defined in (211) With the white-noise component, the cost function

in (2.14) is modified accordingly to

99

(0, (b)) = Y (35)7* - (oh(a(®) + (1 —a®)ofe) — 75)>.  (2.15)

=0
2.2.3 Clﬁstéring Algorithm

- Let O, denote the set pf 6 parameters characterizing the c-th texture source, and
m(b) = ¢ denote the membership function that associates the b-th block with the c-th
texture source. We now describe a clustering algorithm that. optimizes the texture
~ sources O, c - 0, .-+, Le—1, and the relative whité—noise levels a(b) and the member-
ship function m(b), b= 0, --- , Lp—1, such that the overall cost Ske-t db(@ @), (b))
is minimized: We begin the algorlthm by setting a(b) = 0 and initializing m(b) via
evenly partitibning the blocks into L¢ clusters, followed by the three optimization
steps described below. ,

In Stép 1, given the initialized c:(b) and m(b), for each texture source the param-

eters are optimized to minimize the total cost in the corresponding cluster, i.e.,

: @; = argmin dp(O, 2.16
g@ Z 5(©, a(b : | (2.16)
{blm(b)=c}

hence also minimizihg the overall cost. The procedure that optimizes the parameters
will be further discussed in Sec. 2.2.4.
In Step 2, given the texture sources resulting from Step 1 and the initialized m(b)

for every block the white-noise level o(b) minimizing the cost db(@m(b), (b)) is solved
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analytically by setting the derivative of (2.15) with respect to a(b) to zero, i.e.,

'99 _9 \—k/=2 "

P SR ER t) D

a(b) = max{0, min{1,

for all b=0,---,Lg—1, agaln minimizing the overall cost.

In Step 3, given the texture sources and a(b) m(b) is re-selected by

m(b) = argmin db(@c,a(b)) - (218)
C—O, S,Lo—1 o : . )
“forallb=0,:-- ;LB — 1, also minimizing the overall cost. The 'algorithm;con;cinues' ‘

by iterating the three steps until the overall cost converges to a local minimum.
The image models constrﬁcted using the proposed algorithm for Spoke e.nd Pentagon
in Fig. 2.1 are shown in Fig. 2.5. In these exa.mple_s_, we use L¢o = 9 determined
'empirica.lly for the two images as a compromise between the model complexity and

accuracy.

2.2.4 Paramet‘er‘ EstimatiOn

To solve (2.16) in Step 1 of the ‘c,lustering ‘a.lgorithm, we discretize the parameters 9,
Aa, A, ws and 7, similar to our previous work in [28], and estirmate the parameter
set approximating the solution of (2.16). Because a texture source is coinposed of
an irregular texture componerit and a reg‘ula.r‘texture component, as indicated in
(2.9), ¢ 2|@ in (2.15) derived from the texture source can also be decomposed into
two corresponding components, i.e., 0' = Bo? for + (1-— ﬂ)af,eﬂ, where af,e, and

il@ﬂ result from the irregular and the regular components respectively. Given the
choices of 8, Aq, Ap, ws and 7, Ui2|el and UfleR for every filter included in (2.15) can be
computed, and the optimal 3 is determined by setting the derivative of the objective
in (216) with respect to 3 to zero. Therefore, the optimal 3 is a function of the
other parameters, and finding the optimal parameter set involves searching in a 5-D
discrete parameter space.

In the first iteration of the clustering algorithm, instead of performing a full search
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(d) Pentagon, a(b) (e) Pentagon, m(b) Pentagon <I>tt (e7%)

Figure 2.5: Image model for Spoke and Pentagon. In (a) and (d), a(b) indicates the
relative white-noise level in each 8 x 8 block with values between 0 and 1, the brighter
the higher. In (b) and (e), the 9 masked images indicate the blocks that are assigned
to each of the 9 clusters. In (c) and (f), the discrete-space PSD, ®;;(e/*?), of each of
the 9 texture sources representing the 9 clusters is plotted in logarithmic scale.

of the 5 parameters, we conduct the following initialization procedure. First, for each
cluster we measure the sample autocorrelation function, denoted by r*[d], with a small
extend of d, from image neighborhoods centered in blocks contained in the cluster.
The angle 6 is initialized as the direction with the largest average squared gradi-
ent in r3[d], and a sequence of autocorrelation values along § and another sequence
orthogonal to ¢ are interpolated from r}[d] and denoted by {r7,[d]} and {r},[d]}
respectively. Second, a joint search of A, w, and r, are carried out by minimizing

the sum of squared differences between the non-parametric sequence {77 ,[d]} and the
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corresponding autocorrelation values derived from the parameters by

K ‘

et a[d] Aay ey 5] = ﬁexp(‘—)\qfi) F(1-8)3 (k) cos(k‘ws%).‘ (2.19)

s pase] s
Note that 3 is again a function of the selected Xa, ws and r,. Finally, given the other
parameters, A, is initialized similarly by minimizing the sum of squared differences
between {r;‘b[d]} and the corresponding values comiputed by
| d o o

Tap[d| A] = ﬂeXp(—)\bﬁ) +(1=-6). (2.20)
After the initialization procedure, a joint search on {6, Aa) Ao, ws, s} is performed
_ in the vicinity of the initial values to further refine the estimation. In the subsequent
iterations, the initial values can either be the pa.r.ametérs estimated in the previous -
iteration or that obtained by applying again the initialization procedure, whichever
leads to a smaller cost. In each iteration, we only find a suboptimal solution of (2.16)
~due to the discretization and the reduced search space for,the_reﬁnement. N onetheless,
as long as the total cost in each cluster decréasés, so does the overall cost, and the

iterative clustering algorithm continues to converge to a local minimum.

2.3 Transform Coding Analysis

Having discussed the construction of 'the“prop0sed image model, in the following
sections we present theoretical é.nalyses based on the model that identify the poten-
tial improvement in transform coding of images using transforms adapted to image

textures instead of a fixed transform.

2.3.1 Transform Coding Gain

The transform coding gain measures the performance gain of applying a particular
transform to encode source samples over a reference scheme that encodes the samples

directly using scalar quantization and independent coding of the samples at a fixed
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high rate [81,185]. Assume that the source samples are jointly Gaussié.n, the transform
is orthonormal and it decomposes the source sarhples into S subbands, o2 denotes the
variance of subband s, and 7, denotes the ratio betWeen the number of coefficients
in subband s and the total number of ,coefﬁciehts. We fdrther a5surhe that each
* subband is encoded independently frem others, and in each subband the coefficients
‘are encoded with scalar quentization and independent coding.of the coefﬁcients at a
ﬁxed high rate Wlth optimal rate allocation across subbands The transform coding

‘ ga.ln denoted by GT for a transform T, is deﬁned as

SR | GT_ZJ;:+T’S“ | ' (2.21)
~ ' [Io=o (a2)™ : - : :
‘The numerator is the soufce variance and is preportional' to the MSE dist.ortion in
the reconstruction using the reference scheme with a given rate. The denomlnator
is a weighted geometric mean of the subband - variances, and is also proportlonal to
the MSE distortion in the reconstruction using the transform with a given rate (the
average rate across subbands). The transform coding gain is defined as the ratio
. between the two distortions when the source is coded at the same rate, i.e., the factor
- of reduction in distortion resulting from the transform. Note that, from (2.21), a
| larger transform coding gain is achieved if the transform pavcks' more source energy
into fewer subbands. | | | ' | ‘
Now we consider Gaussian texture sources containing only the elliptic random
field component described in Sec 2.1.3, with parameters A, = — In(0.8) fs, A = Aa/kb
where k, = 2, 4, 8, 16, and 32 and ¢ from 0° to 90°, modehng image textures with
different degrees of dlrectlonahty, where a larger k; leads to stronger dlrectlonahty, '
and different orientations. The additional assumption that the texture source is Gaus- -
sian will be elaborated in the next section (Sec. 2.3.2). We consider only the elliptic
random field rather than the composite texture source described in Sec. 2.11 because
of its simple parameterization directly indicating the directionality and orientation
in image texturee. Some examples of the source model are illustrated in Fig. 2.2. ‘
Given the source model, we derive the subband variances end the reSulting transform
~ coding gain for the 8 x 8 DCT and the 8 x 8 KLT, where an unique KLT is derived
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Figure 2.6: Tra.nsform codrng galn 1mprovement by - the 8 x 8 KLT over the 8 x 8»

DCT. The source is the elliptic random field with A\, = — ln(O 8) fsy A = Ao /Ky Where .

ky =2, 4, 8, 16, and 32, and 6 from 0° to 90°. A darker hne corresponds to'a larger
- ky, 1.e., stronger dlrectronahty , .

for each set of the source parameters. The tra.rlsform coding gain improvement in
decibel (dB) by the KLT over the 2-D DCT, i.e., 10-logy, Grir s plotted in Fig. 2.6.

Since the KLT is the optimal transform that maximizes the transform coding gain

for a given source and a given transform dimension assuming'aeymptotically optimal
rate allocation [81], this measurement indicates the maximal improvement in recon-
struction quality achievable by a transform adapted to the source instead of the fixed
2-D DCT, when the source is coded at the _same rate. Note that with the high-rate
sealer quantization and independent coding assumption,ﬁ an 'improvement of 6.02dB
in the reconstruction quality at the same rate is equivalent to a rate reduction of 1
bit per sample to achieve the same quality [44, 81]. |

In Fig. 2.6, the improvement increases with the directionality in the source, and
the improvement is most significant for directional textures oriented around 45°. For
directional textures oriented near 0° and 90°, there ',is little room for improvement

<using an adaptive transform and the 2-D DCT is nearly optimal.. Notice that the
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improvement does not vary smoothly for sources with stronger difectionality, as indi-
cated by the notches at the top curves in Fig. 2.6, because of the aliasing components
that appear in the source for certain orientations, as discussed in Sec. 2.1.5 and illus-
trated in Fig. 2.2. | |

'2.3.2 Rate-Distortion Performance

In this section, we anva.lyze the rate-distortion performance for transform coding of
images, both for the KLT and the 2-D DCT, with the test images shown in Fig. 2.1.

For each image, an image model is first constructed by the texture source clustering

algorifhm presented in Sec. 2.2. For each constituent texture source modeling the
image, the corresponding 8 x 8 KLT is derived from the parametric autocorrelation ,
function. As an example, the 16 KLT bases having the largest variances for each
of the 9 textﬁre sources modeling Spoke and Pentagon, illustrated in Fig. 2.5, are.
shown in Fig. 2.7-(a) and Fig. 2.7-(b) respectively. Notice that unlike the 2-D DCT

-composed of 1-D vertical and horizontal operations, the KLT contains directional

bases aligned with the orientation of the texture sources, and these bases are usually

~among the ones with the largest variances.

To model the subband coefficients, it has long been observed t‘hat‘ for natural

images the distribution of a DCT subband (except for the DC subband) across the

entire image can be well approximated by a Laplacian distribution [68,161]. The
works in [122] and [118] further showed that within a local region the subband is
better approximated by a Gaussian distribution.. Additionally, the local variances
of the image samples are t);picé.lly exponentially distributed across the image. As a
résult, the distribution of a subband over the image can be approximated by a Gauss

mixture with an exponential_'mixing distribution, which is indeed Laplacian. Based

“on these prior works, we first assume that the subbands in a local image region, e.g.,

around a block, are Gaussian distributed. Note that the neighborhoods centered in a

~block is modeled as segments of a realization of the associated texture source, mixed

with additive white noise and then scaled in intensity. Thereforé, with a further

assumption that the additive noise is Gaussian, the underlying texture sources are
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Figure 2.7: Each of the 3 x 3 plots corresponds to one of the nine texture sources
modeling Spoke and Pentagon, as illustrated in Fig. 2.5. (a) and (b): The 16 bases of
the 8 x 8 KLT having the largest variances, ordered with descending variances from
left to right and then top to bottom.- (c) and (d): The rate-distortion performance
of transform coding for each texture source. In each plot, the top dash-dotted curve
represents the performance of the 8 x 8 KLT, the middle dashed curve represents the
8 x 8 DCT, and the bottom dotted straight line represents direct coding of the source
samples without a transform.
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also Gaussmn _ ,
We contlnue the analy51s by con51der1ng the rate- dlstortlon performance for each
unit- varlance texture source, now assumed to be Gaussian based on the above argu-
ments with the 8x 8 KLT and the 8 x 8 DCT The S subbands, S = 64, from the
texture source are therefore also Gaussian Wlth variances determlned by the source.
In this analys1s we consider the case that every ‘subband is coded 1ndependently from ;
' others, and the codlng performance achleves the rate—dlstortlon function of Gau551an

. Inemoryless sources, i.e.,
» "

)\

| (2;22):

e s()\) mln{)\

) C-S‘

- 1 |
R.s(A) = max{0, - log2

' W.h.ere’ Rcs and D, are the rate 1n bits per coeflicient and the MSE distortion f’ork
coding subband s in the c-th texture source respectively, o, denotes ‘the variance
of the subband and A controls the rate-distortion trade-off 44, 185]. onsequently, ,
~ the total rate and the MSE dlstortlon for coding the c-th texture source us1ng these

transforms are computed by

§-1 S s-1 \ .
=Y neRes(A), De(N) :-‘,Z”stc,s(’\) L en)

respectlvely, where sy 88 deﬁned for (2 21), equals o for the 8 x 8 transforms. ‘Note '
that all subbands share the same A so that optlmal rate allocatlon among subbands
- is achieved, and a smaller A leads to a higher total rate [185]. In Fig. 2.7-(c) for
Spoke and Fig. 2.7-(d) for Pentagon, the performance of the 8 x 8 KLT and DCT
for each texture source is plotted,v together with a reference scheme that encodes the
‘source samples directly without a transform, i.e., § = 1 and 02, = 1 equals the
source ‘variance. In each plot, the rate is represented by bits per source sample, and
the dis_tortion,isrepresented by the signal-to-noise ratio (SNR) in decibel (dB), i.e.,
=10 - logyo Do()). Notice that at high rates (small A) De,s = 02, - 272, iie., the

SNR increases by 6.02dB for every increase in rate of 1 bit pér sample, and the gap ,

~ between either the KLT or the DCT performance to the reference scheme is indeed

the transform coding gain as defined in (2.21); Furthermore, comparing Fig. 2.7 with
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Fig. 2.5, the texture sources With the most improvements by the KLT over the DCT
are the ones with stronger directionality and oriented near 45°, consistent with the
conclusion in Sec. 2.3.1. These improvements are enabled by the directional bases in
the KLT that capture most of the energy in the directional textures. |

Following the above'anal})sis for each texture source, we now analyze the image-
wise rate-distortion performance. We consider a KLT scheme that operates with L¢
modes, each corresponding to the 8 x 8 KLT derived from one of the Lo texture
sources mrodeling the image. For each block, the KLT scheme adaptively selects the
mode corresponding to the texture soufce associated with the block. The model
subband variance around a block, denoted Ey ag;s for subband s and the b-th block,
resulfing from either the KLT or the DCT, is computed by |

ot = odal) + (1 - alB)de,, ) (2.24)

where Uf|@1'n(b) denoteé the subband variance derived from the associated texture
source. ‘ v 7

~ Note that thelanalysi\s is meant to model the relative performancé between the
KLT and the DCT in a general framework for transform coding of images, and there-
fore quantify the potential performance improvement by transforms locally ‘ada‘pted
to the image over a fixed transform. It is not intended to model the absolute perfor-
mance of a particular image coding system. To this end, for coding of the subband
coefficients, we still assume independent coding across subbands and in each subband
ideal coding achieving the rate-distortion function of Gaussian memoryless sources.

The local rate-distortion performance around a block is therefore modeled by

2 o :
"2}, Dyy(A) = min{A, 0.}, (2.25)

Ry s(A) = max{0, % logs

where Ry s and Dy, are the rate and the distortion for coding subband s around the

b-th block respectively, and agys denotes the variance of the subband. Consequently,
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Figure 2.8: Model image-wise rate-distortion performance of the 8 x 8 KLT and the
8 x 8 DCT.

the image-wise performance is

Lg-158-1 1 Lpg—-185-1
R(’\ Z Zﬂst s(/\ D(’\ Z ZnsDb s(/\ (2'26)‘
b=0 s5=0 b=0 s=0

where Lg is the number of blocks in the image. Again, the same A is used across all
subbands and blocks so that optimal rate allocation is achieved. For the test images
in Fig. 2.1, the model image-wise rate-distortion performance is plotted in Fig. 2.8,
for both the KLT and the DCT. For every image, 9 clusters are used to construct
the image model. In each plot, the rate is represented by bits per image sample,

or bits per pixel (bpp), and the distortion is represented by the peak signal-to-noise
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ratio (PSNR) in decibel, defined as 10 - loglo %’%, a Popular measurement for the
reconstruction quality of 8-bit grayscale images.

The analysis shows that using a transform adapted to the local statistics, even
with only a limited degree of adaptation (9 modes), there is a potential performance
gain of up to 3dB for Spoke, 1dB for Monarch and Pentagon, and 0.5dB for Lena,
over the fixed DCT scheme with the same 8 x 8 blocks and the same rate. The image-
wise performance gain may be less significant for images containing fewer directional
features, e.g., Lena. Nonetheless, locally around sharp directional features, especially
~ those oriented close to 45°, we can still expect a gain in the order of 5 to 10dB as
suggested by the texture-wise performance in Fig. 2.7-(c) and Fig. 2.7-(d), rendered
by the directional bases. Note that in thisi theoretical ané,lySis, we neglect the rate
overhead required to signal the the constituent KLT, or equivalently the texture
source parameters, and the mode selections, ,i.e.,'vthe association between the blocks
and the texturé sources. In practical image coding systems, this overhead for using an

adaptive transform should be considered as we shall address in the following chapters.

2.4 Summary

We have proposed to model an image by a set of texture sources to copeﬂwith locally
varying statistics. Each texture source is a 2-D station’é,ry random field composed of
an irregular and a regular texture component, represented by the elliptic randdm field
and the periodic-wave random field respectively. Using the texture sources, any image
neighborhood centered in a vparticula,r' image block is modeled as a 2-D segment of a
realization of the texture source associated with the block, mixed with additive white
~ noise and rﬁormalized by the local variance and the local mean around the block. For
a given image, to jointly determine the parameters of the texture sources modeling
the image, the association between the image blocks and the texture sources, and
the white-noise level in each block, an iterative clustering algorithm is proposed to
-optimize the i image model for the analysis of transform coding performance.

Using the model, we first consider image textures with different degrees of d1rec-

tionality and orientations, and evaluate the transform coding gain improvement by
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fhe KLT adapted to the textures over the fixed 2-D DCT. The results show that an
adaptive transforni brings more improvements for textures with stronger directional-
ity, and in particular for directional textures oriented further away from the vertical
and the horizontal direction. Rate-distortion analysis based on the image model is
also performed for a set of test images. The analysis indicates that using a trans-
form adapted to local ét,a.tistics in the image instead of a fixed tran.sforrm, there is a
substantial performance gain for images rich of edges and lines. For other images,
significant improvements can still be expected: locally around sharp diréctional fea-
tures, rendered by the directional bases of the adaptive ﬁransform aligned with the

image features.
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Direction-Adaptive

Partitioned Block Transform

In the previous chapter, we have shown that image coding perfermance can be im-
proved substantially using the KLT locally adapted to the image statistics over a fixed
transform. The improvement is mainly contributed from the directional bases of the
KLT aligned with directional ima.gefea.tures.v This suggests that instead of using the
- KLT, the performance improvement fnay be rendered by a pracfical‘ transform with
a ﬁumber of modes, each providing a set of directional bases, that can be adaptively
selected according to the local directionality in the image. In this chapter, we propose
such a direction-adaptive transform constructed using simple 1-D DCTs, referred to.
as the direction-adaptive partitioned block transform (DA-PBT). For iina.ge coding,
the best mode of the DA-PBT is selected at the encoder for each image block using a
rate-distortion optimized framework and signaled to the decoder as side information.

In Sec. 3.1, we describe different modes of the DA-PBT, each mode defining a set
of transform directions, a block partitioning scheme, coefficient ordering for entropy
coding and a'quantization matrix. The a.pplica.tion of the DA-PBT to image coding in
practice is discussed in Sec. 3.2. The pfoposed transform can also be combined with
block-based predictive coding widely adopted in image and video coding techniques,
. as explained in Sec. 3.3. Theoretical analysis of the coding perfermance using the

DA-PBT based on the image model presented in the previous chapter is included in

44
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Figure 3.1: The transform directions and the encoding order of the DDCT, the DA-BT
~ and the DA-PBT. In (lc), r{ and r} are also connected to r? and 72 respectively, but
" the lines are omitted for clarity. '

‘Sec. 3.4. Finally, experimental results demonstrating“the‘su-perior performance of the -

proposed transform are shown in Sec.'3.5.

3.1 Construction of DA-PBT

| To efficiently represent blocks containing directional features, the proposed DA-PBT
combines a direction-adaptive block transform (DA-BT) with a direction-adaptive

- block partitioning scheme, to be discussed in Sec. 3.1.1 and Sec. 3.1.2 respectively.

3.1.1 }Direction—Adapti\vfe Block Transform' |

" In conventional image cdding, the 2-D DCT ié composed of two stages of separable
1-D transforms. Taking the 4 x 4 DCT as an example, the four columns in the 4 x 4
block shown in Fig. 3.1-(1a) are first transformed in Stage 1 into columns of DCT |
coefficients, {ci~1, i = 1,---,4. Subsequently, in St}age‘ 2 the rows. of coefficients

are further transformed into {ri**},i=1,---,4 To encode the DCT coefficients, a
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zigzag scanning order is adopted, as indicated in the rightmost plot in Fig. 3.1-(1a),
so that the coefficients generally decrease in magnitude along the scan. This property
can then be exploited in entropy coding of the quantlzatlon indices [109, 140] as we
shall discuss in Sec. 3.2.2.

To our knowledge, the work most closely related to our proposed DA-PBT is the
directional DCT (DDCT) [218,219]. The DDCT consists of directional modes defined
similarly as the 'intra-prediotion modes of H.264 [206], in addition to the conventional
2-D DCT. The non-directional mode, the vertical and the horizontal mode in the
DDCT all correspond to the conventional transfofm (Fig. 3.1-(1a)), whereas the oi:her
modes, however, are constructed by varying the transform directions. For instance,
as shown in Fig. 3.1-(1b), in Stage 1 of the diagonal—_doWn—rig’ht mode, the 1-D DCTs,
possibly with different vlerigths, are applied to the sequences along the corfe‘sponding
direction. In Stage 2,> anothef set of the 1-D DCTs is further appliéd to the set
of coefficients from Stage 1 with the same superscript index, e.g., {c1.7}, because
they repfésent the frevque‘ncy components at similar spectral locations and are likely
to exhibit higher correlation [219]. To encode the resulting coefficients, a zigzag
scanning order modified from that in Fig. 3.1-(1a) is adopted, as shown in Fig. 3.1-
(1b). Similarly, the transforms and the scanning order in the vertical-right mode of
the DDCT are illustrated in Fig. 3.1-(1c). Note that the Stage-1 direction in the
DDCT does not match exactly with that defined in the vertlcal-rlght mode of H.264,
i.e., with a slope Z% ~ —2. The remaining modes can be derived by ﬂlpplng the
operations in the diagonal-down-right or the vertical-right mode in the appropriate
dimensions. : » | ’

There are two key differences between the proposed DA-BT and the DDCT. The
first difference is in the choice of the transform directions in the vertical-right mode
(and the three associated modes with ﬂippéd directions). We argue that the direction
in Stage 1 of the DDCT (Fig. 3.1-(1c)) is still close to the vertical direction, and there-
fore the vertical-right mode may not render much benefit over the non-directional or
_the vertical mode. To provide a directional selectivity that covers all possible feature
orientations more evenly, we adopt the configuration in Fig. 3.1-(2c). Aside from the

above consideration, the adopted direction matches that in H.264 [206], allowing a
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(2) DCT  (b) DA-BT (c) DA-PBT (d) DCT (¢) DA-BT (f) DA-PBT

Figure 3.2: Transform coefficient magnitude of 8 x 8 image blocks. The conventional
2-D DCT is used in (a) and (d). For the DA-BT and the DA-PBT, the diagonal-
down-right mode is used in (b) and (c) and the vertical-right mode is used in (e) and
(f). The original block is shown at the top, together with the Stage-1 directions. The
magnitude of the coefficients resulting from Stage 1 is shown in the middle, together
with the Stage-2 directions, and the magnitude of the final coefficients is shown at
the bottom. In (c) and (f), the coefficients involved in Stage 3 of the DA-PBT are
indicated by the squares.

simpler implementation when the DA-BT is combined with intra prediction, as we
shall discuss in Sec. 3.3.1.

The second difference is not in the transform itself, but in the ordering when en-
coding the coefficients. Consider the diagonal-down-right mode of the DDCT shown
in Fig. 3.1-(1b). In general, this mode is selected if edges in the corresponding ori-
entation appear in the block. Since the 1-D transforms in Stage 1 are aligned with
the edges, energy is concentrated towards the DC coefficients, i.e., {c} -}, and the
sequence containing the DC coefficients approximately consists of one or multiple step
transitions. Consequently, after Stage 2, most energy still resides in {r{~"} and the
low-frequency components are more likely to have larger magnitude due to the spec-
tral characteristics of the step function. Therefore, we propose the encoding order

shown in Fig. 3.1-(2b), which is different from the modified zigzag order used in the
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DDCT (Fig. 3.1-(1b)). With the same argument, instead of applying the same op-
~erations for the vertical (or horizontal) mode and the non-directional mode as in the
DDCT, the encoding order of the vertical mode is modified as shown in Flg 3.1- (2&)

although the transform remains the same.

In addition to the non-directional mode that corresponds to the 2-D DCT, the
DA-BT consists of eight directional modes:  vertical, vertlcal-rlght, diagonal- down—
right, horizontal-down, horizontal, horizonta.l—up,'diagonal-down'—left, and vertical-
left, all can be derived from the configurations in Fig. 3.1. The configurations for
4 x 4 blocks can be directly extended to 8 x 8 or 16 x 16’ blocks. To ‘illustrate the
performance of the DA-BT, an 8 x 8 block conta.lmng diagonal edges is used as an_
example and the coefficient magnitude resulting from the conventional 2.D DCT and
the DA-BT are shown in Fig. 3.2-(a) and Fig. 3.2-(b) respectively. In this example,
many of the 2D DCT coefficients still retain large ma.gnifude Addltlonally, the
coefficient magnitude does not generally decrease along the zigzag order, makmg
entropy coding designed based on this a.ssumptlon inefficient. On the contrary, the
DA-BT concentrates the energy to the coefficients located at the first column and.
the first row while keeping the others zero. It is also evident that the encodlng order
proposed in Fig. 3.1-(2b) better exploits the distribution of the coefficients than the
order a.dopted in DDCT (Fig. 3.1-(1b)). |
~ Note that in the 2-D DCT, the DC level of a block only affects the DC coefficient,
Le., r] in Fig. 3.1-(1a). However, for the DA-BT as well as the DDCT, the DC level

- may contribute to other coefficients, e.g., {r}>7} in Fig. 3.1-(1b), due to the unequal
lengths of the Stage-1 transforms as discussed in the shape-adaptive DCT literature
[112]. This leakage of the DC energy into the non-DC coefficients hampers energy
concentration. To eliminate the problem, the DC separation procedure proposed
in [112] is adopted in both the DDCT and the DA-BT. To transform a block, the
block mean, denoted by m, is first subtracted from all pixels. After two stages
of the transform, the DC coefficient r{ is then set to vV Nm where N denotes the
number of pixels in the block, equal to the DC coefficient of the 2-D DCT. It has
been shown in [112] that the resulting transform is reversible using an additional

orrectlon procedure With DC sepa.ra.tlon/correctlon the DC level affects only the .
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DC coefficient, and, in particular, a constant block leads to at most one nonzero

coefficient.

3.1.2 Direction-Adaptive Block Partitioning
- ‘Comf)ared to the 2-D DCT, one disadvantage of both the DDCT and the DA-BT
is the increase in the maximum length of the constituent 1-D DCTs. For an S x 5
" block (S > 2), the 2-D DCT requires length-S 1-D DCTs, whereas the DDCT and the |
DA-BT require length-(25—1) (Fig. 3.1-(1b)) and length-(35—2) DCTs (Fig. 3.1-(2c))

v' _ respectively To reduce the complexrty of the DA-BT, we propose to further divide

the block into directlonal partltions, indicated by different shades in Fig. 3.1—(3b) '
~and Fig. 3.1-(3c). The partition boundaries are aligned with the transform direction
in,‘Stage, 1, and We limit the >Stage-r2‘ transforms sothat they do not extend' across
, partition boundaries. In fact, with the proposed oartitioning that divides a block
| into 2 partition's\for the diagonal-down-right mode (Fig. 3.1-(3b)) and 3 partitions for
the i/ertical-right mode (Fig. 3. 1‘(30)) the maximum required length is S, , equal to-
that of the 2-D DCT To. further exploit the correlation among partitions, a Stage-
3 transform is apphed to-the DC coefficients resulting from Stage 2, indicated by
the squares in Fig 3.1- ( ).. Additlonally, the encodlng order is modified to cope
~ with the partitioning. The sequences that originally belong to the same sequence in
the un-partitioned DA-BT are encoded in an interleaved manner. For instance, in
Fig. 3.1-(3b), {r!~3} and {rl~?} are ordered as ry, 1, 73, r4 and 75. We refer to the -
partltioned version of the DA-BT as the DA-PBT. ,
- To accommodate the addition of the partitionlng and the Stage—3 transform we
~ propose a two-level DC separatlon/ correction procedure 51m11ar to the one-level pro-
~ cedure in [112]. To apply the transform, the block mean, y, is first subtracted, and
the mean in each block-mean-removed partition, denoted by pp, p=1---P where P
is the numher of partitions, is further‘removed,‘ followed by the Stage-1 and Stage-2
transforms. The resulting Stage-2 DC coefﬁcients, e.g., i and 73 in Fig. 3.1-(3b), are
then set to \/Eup where N, is the number of pixels in the corresponding partition.
Finally, the Stage-3 transform is applied and the resulting DC coefficient is replaced
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by vV Npu where N is the number of plxels in the block
To reconstruct the block, the DC coefficient is first replaced by 0 followed by the
inverse Stage-3 transform. A DC correction procedure similar to that in [112] is then
af)plie.d to correct the resulting Stage-2 DC coefficients. - After performing the in-
verse Stage-2 transforms in each partition, the Stage-1 DC coefficients, e.g., {ci..;} in
Fig. 3.1—,(3b)", are then corrected, followed by the inverse Stage-1 transforms. This DC.
separation/cofrection procedure ensures the reversibility of the transform. Further- |
more, a constant block results in at most one nonzero coefficient after three stages of
the transform, and a constant partition also leads to at most one nonzero coefficient
in the partition, an additional property achieved through the two-level procedure.
Note that the procedure causes a slight deviation from the orthonormality of the
- transform. Quantitatively, for unit-variance white noise in the ‘transform coefﬁoients,
the consequent noise variance in the reconstructed block is below 1.008, ‘1.003, and -
1.001 for 4 x4, 8 x 8, and 16 x 16 blocks respectively for all the lnodes in the DA-PBT.
The proposecl partitioning not only reduces the complexity, but also improves
" energy concentration. For -’instance,‘con‘sider the image block in Fig. 3.2-(c) where
the edges are contained only in the upper-right partition of the diagonalfdowh-right
-mode in the DA-PBT. The energy of the DA-PBT coefficients is mostly confined
in the upper-right partition whereas the other partition oonsists of only one nonzero
coefficient, exhibiting improved concentration compared to the DA-BT and the 2-D
DCT. A similar observation cah be made with the image block and the corresponding
coefficients in Fig. 3.2-(d)~(f). Moreover, the pdrtitioning also i’mproves’visual quality
of lossy reconstructions because the compression artifacts generally appear only in
the partition containing the edges rather than the whole block. To further improve
energy concentration and visual quality for vertical and horizontal image features,
the partitioning can be extended to the vertical and the horizontal mode by d1v1d1ng
the block into two rectangular partitions as illustrated in Fig. 3.1-(3a).
The basis functions of the 8 x 8 DA-PBT for different modes are shown in Fig. 3.3,
together with the magnitude of the corresponding frequency fesponses. In the direc-
tional modes, it is clear that the bases are divided into multiple sets, each responsible

for a partition in the block. As discllssed, this helps to confine the energy of image
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 features spatially within the - associated set of coefficients.. Addltlonally, the dlrec- a
tional frequency bands resulting from the directional bases also help to confine the

) energy of dlrectional features spectrally ina feW coefﬁc1ents

3. 1.3 Quantization

Given the quantization stepsize ¢ that controls the quality of the reconstructlon a

transform coefficient c is: mapped to the quantizatlon index 77 by

_ { sign(c)_[lc—gl + A, ]5[ + A >0, (3.1)

- 0, otherwise, *

' Where A < 1, and then reconstructed to the correspondlng representatlve level c,,
In JPEG, A = % and &, = nQ so that every quantization 1nterval has the same
- size and the representatlve levels are always located in the middle of a quantization
interval [109] In general, a different A may be used to adjust the s1ze of the zero
1nteryal, i.e., the interval containing zero, and the representative leVels-can be specified
sign —A+ n#0

0, v o n =70,

,‘Where 0 < € < 1 determines the placement of &, within the quantiZation interval.
For example, to better suit the skewed distribution of the transform coefficients, the
 H.264 reference software uses A = % and £ = A so that the zero 1nterval is larger -
than theothers and ‘the representative levels of the nonzero intervals are closer to
the boundary with the lower value [202]. In our implementation, for’simplicity we
directly adopt this setting without further optimization. _

Human visual perception tends to be less sensitive to the amplitude change in ,the
high—frequency patterns, such as the 2-D DCT basis functions corresponding to the
high-frequency coefficients shown in Fig. 3.3-(a) [3,131]. Consequently, for a fixed-rate
- ‘budget, these coefficients can bear more quantization noise than the others. To take

‘advantage of this property, JPEG has suggested 8 x 8 quantization matrices, obtained
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(d) vertical-right mode

Figure 3.3: For each mode of the 8 x 8 DA-PBT, the plots from left to right show
“the basis functions and the magnitude of the corresponding frequency responses of
the forward transform, and the quantization matrix (luminance).
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f
f

via subjective evaluations as illustrated in the rightmost plot of Fig. 3.3-(a) for the
‘ luminance component, that can be scaled to determine the quantization stepsizes for
different coefficients [109].

To design the quantization matrices for the eight directional modes of the DA—PBT,
we propose the following approach. Assume that a quantization matrix for the 8 x 8
2-D DCT, where the 64 entries in the matrix are denoted by q. € R%, is already
avail‘abl‘e and achieves the best visual qualiﬁy in the rec’onstructibn; The quantization
matrix suggested in the JPEG standafd'[lOQ] shown in 3.3-(a) could be used for that
purpose.v Our gqal is to choose the quantization matrix for a directional transform,
fepresented by s € R, such that the covariance matrix of the quantization noise in
the reconstructed block is close to that resulting from the conventional transform. Let -
the random variable x € R%4 represent the pixels in a block, and T, and T, € RO4x64
denote the transform matrix of the conventional and the directional transform re-
spectively such that T.x and Tyx represent the corresponding transform coefficients.
Additionally, denote the quantization noise in T.x and de“ by n. and n, respectively. -

To simplify the problem, we assume fine qliantization such that E[n.n%] and
E[ng4n?] are diagonal [164,177], i.e., the transform-domain quantization noise is un-
correlated, and the diagonal entries are propoftional to the squared value of the corre-
sponding quantization stepsizes. To meet the aforementioned objectiire, we minimize
the sum of squaired differences between the entries in the two covariance matrices
of the noise in the reconstruction, i.e., T, E[n.nI]T;T and T;'E[nmZ]T;7, where
TC‘T and T;7 denote the transpose of T, and T;l respectively. Denote Ds(q) and
Ds(qq) as the diagonal matrices where each diagonal >entry is the squared value of the

corresponding element in q. and qq respectively, and -
Ce = T;' Da(q:)T; 7, Ca = T Da(aa) T5"- (3.3)
Denote the trace of a matrix T by ¢r(T), the problem can then be formulated as

arg_min tr((Cq — Cc)_(Cd - CC)T) B ‘ (3.4)

q4d ’
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Since T is very close to orthonormal as discussed in Sec. 3.1.2, T4T% = I and

therefore

tr((Ca — Co)(Ca — C)T) |
~ tr(T4TE(Cy — C.)(Cu — Co)TT,TY)
— tr(Ty(Cy — C)TET4(Cy — C)TTT) |
= tr((D2(qa) — TaCcTy)(Da(aa) — TaC.TZ)T). - (3.5)

From (3.5), the solution of the the original objective (3.4) can be closely approxi-
- mated by the square root of the diagonal entries in T4C.T7. The rounded luminance
quantization matrices for the directional modes in the 8 X 8 DA-PBT derived from
the JPEG luminance quantization matrix using this method are shown in Fig. 3.3-(b)
~ to Fig. 3.3-(d). The chrominance /matficesican be similarly derived from the matrix
‘suggested in JPEG [109]. For the 4 x 4 and 16 x 16 tfansforms, the 8 x 8 matrix in
JPEG is ﬁrst'downsambled or upsampled‘ to generate the qilantization niatrices for
the conventional transform, and those for the directional t_rahsforms are then derived -

using the same method.

3.2 Image Coding with DA-PBT
- 3.2.1 Direction Selection |

To encode an image, we divide the image into 16 X 16 macroblocks. Each macroblock-

_ may contain a single 16 x 16 block or four 8 x 8 blocks, and each 8 x 8 block can

be further divided into 4 x 4 blocks. Every block is assigned with one of the nine

modes of the direction-adaptive transform with the same size as the block. When

_ blocksizé 8 x 8 or 4x4 is selected, a 2 x 2 or 4 x 4 2-D DCT is applied to the DC
coefficients in the constituent blocks so that only one overall DC ‘coefﬁcient remains

" in a macroblock. Additionally; to exploit the correlation acrosé macroblocks, an extra
2-D DCT is dpplied to the DC coefficients in every group of 4 X 4 macroblocks.

An integer quantization parameter Qg 264 from 0 to 51 that can be directly mapped -
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Figure 3.4: The selected blocksizes and modes for a 256 x 256 region of the Pentagon
image. The blocksizes are indicated by the square blocks, and the directional modes
are indicated by the additional lines delineating the direction-adaptive block parti-
tions. A square block without further partitions represents the non-directional mode.
The overhead signaling these selections is coded at 0.04 bpp, around 5% of the total
rate.

to a quantization stepsize @ as defined in H.264 is first determined to set the desired
reconstruction quality [206]. Given @y 264, for each macroblock the blocksize and the
modes are selected by minimizing a Lagrangian cost function D, + /_\(Rc + Rs), simi-
lar to entropy-constrained vector quantization [35] and the rate-distortion optimized
framework for motion estimation in video coding [82,205]. In the cost function, D,
denotes the distortion (sum of squared error) in the reconstructed macroblock, R,
and R, denote the number of bits required to encode the quantization indices and the
overhead signaling the selection respectively, and X is the Lagrangian multiplier set to
0.85-2(@m.264-12)/3 ghtained empirically in the context of hybrid video coding [204,205].

An example of the selected blocksizes and modes is shown in Fig. 3.4. In our

experiments, the overhead signaling the blocksizes and the transform modes typically
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takes about 5% of the total rate for most images. The figure also shows that the
DA-PBT can be viewed as a;(generalization of the variable block-size transforms in
[207] with the inclusion of non-rectangular partitions and directional transforms. As’
a post-processing step, the blocking artifacts typically observed in blockftransform7 ‘
based image coding are mitigated by an adaptive deblocking filter modified from
that proposed for the 4 x 4 blocks in H.264 to accommodate the 8 X 8 and 16 x 16
blocks [128]

3.2.2 Entropy Coding

To encode the quantization indices, context-based adaptive binary arithmetic coding -
(CABAC) ,used in H.264 for 4 x 4 blocks is adopted and further extended to handle

- 8x8 and 16 x 16 blocks [140]. Together with the encoding order illustrated in Fig. 3.1,
CABAC exploits the common patterns of trailing 1’s and 0’s along the ordered indices
to 1mprove compression, " , | '

- The side information signaling the blocksizes and the modes is also encoded us1ng
CABAC, similar to encoding the motion information in H.264 [140]. Specifically, one
symbol for each macroblock indicates if the macroblock is divided into four 8 x 8
blocks, -and another symbol for each 8 x 8 block indicates if it is further divided. To
encode the mode of a block, one symbol first signals if the selected mode ‘is the non-
directional mode. If this is not the case, we first represent each directional mode by a
nu‘mberbfr()m 1 for the vertical mode counterclockwise to 8 for the vertical—left mode,
and also represent the non-directional mode by 0. Additionally, denote the modes .
previously selected for the left, the top, the top-left, and the top-right neighbor of

“the current block, i.e., the blocks in the causal neighborhood, by my, My, my and my,
respectively. If any of these neighbors exists and uses a directional mode, the mode of
the current block is predicted from the neighbors, in modulo-8 arithmetic, and only
the prediction residual is signaled: Otherwise the mode is signaled directly without
prediction. To come up with the prediction, denoted by m,, we use the follcwing
rules. If the left neighbor exists and it has a mode corresponding to a horizontal-ish

direction, i.e., 4 < m; < 6, we select m, = m because it is likely that a horizontal-ish
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image feature extends from the left neighbor to the current block. If the condition ,
for ml does not hold, similar condltlons are eva.lua.ted for my, my and mtr in order. .
If none of the above conditions holds, we continue W1th the follow1ng rules. If none
‘of my, m; and my is 0, we select m,, =my if my 1s closer to m, than to my, again
in modulo-8 a.rlthrnetlc ie., the modes are closer between horizontal nelghbors than
vertical nelghbors a.nd mp = m,; otherwise. Instead if any of m;, m; and my is 0,
mp=my if my#0, m,=myif m=0 and my 7é 0, and otherwrse the current mode B

is directly 81gnaled without pred1ctlon

3' 23 .Computational Complexity
. The rate-distortion optimized d1rectlon selectlon process generally requires perforrn—' :
ing the transforrn quantlzatlon and entropy codlng for every mode to: evalua.te the
- rate and the distortion. Therefore, ‘the cornputa.tlona.l cornplex1ty of 1rnage codlngl |
with DA-PBT at the encoder is approxunately nine t1mes that of convent1onal image :’
codlng usmg the 2-D DCT. Note that the decoder complex1ty is about the same as
a conventlona.l decoder since only the mode selected at the encoder is performed at
the decoder. _ ‘ o o

To reduce the encoder complexity, one approach is to replace the rate and distor- -
tion evaluation with a simpler measurement such as the sum of absolute values (SAV) -
of the transform coefficients. The original Lagrengian cost D + MR+ Rs) becomes
3. + VAR, where S; denotes the SAV, a simplification often used in video coding
implementation [204,205]. This simplification bypasses the need for quantization and -
entropy coding of the coefficients for every mode, hoWever, in our.eXperiments, it can :
* lead to significant loss in performance. | - , .
- Another approach is to examine only a subset of the modes based on the output
of a simple classifier, analogous to the technique in classified vector quantization [157]
where one out of multiple codes is selected for an image block’ based on classification -
of the content instead of testing through all codes as in universal vector quantiza-
tion [67]. In particular, we include in the selection process only the non-directional

mode and at most one directional mode obtained as follows.‘ For each directional
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(a) - (b) (c)
Figure 3.5: Dlrectlonal zigzag scanning order to estlmate the gradient along the (a)
vertlcal (b) d1agona1-down—r1ght and (c) vertlcal-rlght direction.

mode, a directional»zigzag scanning order is defined as illustrated in Fig 3.5 using
- 8 X 8 blocks as an example, and‘the directional gradient is measured as the sum
of absolute differences between every two ‘consecutive image pixels along the order,
calculated using simple integer operations. The direction with the smallest gradient
is referred to as the estimated direction, and bthe corresponding mode is included in
the selection process if the following two conditions hold. First, the largest gradient
~ exceeds a thre‘shold, e.g., four times the number of pixels in the block, so that the
block indeed contains signiﬁcant iiariations that "may be better handled by a direc-
tional transform. Second, at least one of the directions with the second or the third
smallest gradient is an immediate neighbor to the estimated direction. This condi-
tion suggests that the block contains image features with a single orientation, e.g.,
lines and edges, close to the estimated direction, rather than compleic patterns having
multiple dominant orientations, e.g., corners, that cannot be exploited efﬁciéntly by
the directional transform. By considering at most one additional mode, this approach
significantly reduces the encoder complexity to less than twice of the complexity of
a conventional encoder while incurring only a small perforrnance loss, as shall be

presented in Sec. 3.5.

3.3 Residual Coding with DA-PBT

Hybrid coding is a technique widely used in image and video coding [206]. It consists

of two steps. In the first step, the block to be encoded is predicted by a prediction
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block generated from the reconstfuction of the previously encoded pixels. The recon-
struction requires a decoder loop to be included at the éncbder. Hence, this step is
referred to as closed-loop prediction. Depending on the source of these pixels, there
are two types of closed-loop prediction: intra prediction,.using pixels in the same |
image, and inter prediction, using pixels in other images, e.g., previously encoded
video frames. In the second step of hybrid coding, the residual block is further decor-
related by transform coding, where block transforms are especially suitable because
of the block-based prediction. Assuming directional features exist in the block to be
‘encoded, for both intra and inter prediction, direct‘iona.lity may still remain in the
residual block due to limited prediction accuracy. This directionality'can be exploited

by the DA-PBT to improve the overall performahce of hybrid coding.

3.3.1 vIntna Prediction

Directional intra prediction is included in H.264. To encode the current block, a
~ prediction block is extra.pdla.ted along a certain direction from préviously encoded
pixels. Eight directional modes are defined in H.264 for 4 x 4 blocks, aligned exactly
to the Stage-1 directions in the DA-PBT, together with a ‘non-directional mode (DC
mode) where the prediction is simply the average of the surrounding pixels [206]. We
-argue that the directionality in the original block should be close to the direction
selected for intra prediction, and therefore so is the remaining directionality in the
residual. Based on this a.rgumént, instead of applying a conventional transform to
the residual, we propose to always apply the DA-PBT using the same mode as intra
prediction. This method requires no additional search for the transform mode, and
thus no extra signaling is needed and the computational complexity is approximately
the same as if the 2-D DCT is always applied. Moreover, DC separation/correction
can be omitted since the DC energy is typically small in the residual. To further reduce
the complexity, directional intra prediction and the DA-PBT along the same direction
can be combined by applying the DA-PBT first and then performing predicfiovn only
to the Stage-1 DC coefficients (with proper scaling), rather than to all pixels in the

block. Note that we extend the nine intra prediction modes for 4 x 4 blocks defined
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" in H.264 to 8 x 8 and 16 x 16 blocks to be apphed in conJunctlon Wlth the DA—PBT

of the corresponding blocksize.

3.‘3.2 Inter Prediction

In most‘ video -coding standards, 'i/nter -prediction is acHieved ‘through block—based ‘
motion—compensated prediction {206]. Analogous to the argument for intra predicti‘on,
if directional features exist in the block to be encoded, similar directiOnality generally
resides in the corresponding predlctlon block, generated from the prev1ously encoded

" video frames and possibly also in the residual block To apply the DA- PBT to the

inter res1dual, instead of cons1der1ng all the modes, the simplifying approach described o

in'Sec. 3.2.3 is again adopted. However, instead of measuring the directional gradients ‘
in the residual block that is to be transformed, the. measurement is performed on

the 'prediction‘ block based on the assumption that the two blocks possess similat

measured gradlents satisfy the conditions in See; 3.2.3, suggestmg hlgh d1rect10nahty: |
in the prediction block and therefore possibly in the residual, one directional mode of
the DA-PBT is considered in the direction selection process at the’encoder, in eddition
to the non-directional mode. At the 'decodevr, thes‘e ‘conditions can be examined
by performing the same measurement on the prediction block‘ ge‘ne‘rated during the
decoding process. vyTherefore, only if the conditions are satisfied the decoder needs to
decide whether the non-directional mode or the directional mode has been selected,
which can be signaled with a binary symbol from the ene0der. ‘More importantly,
without further overhead, the decoder can recover this directienal mode as it is the one
with the smallest measured gradient. When applylng the DA-PBT to inter residual
blocks that already require less rate to encode thls approach greatly reduces the rate

" overhead that can easily nullify the potential galn of the DA- PBT.
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3.4 ’The‘Oretical Analysis of DA-PBT

3.4.1 Transform Coding Gain

" Similar to the analysis in Sec. 2.3.1, the transform coding gain improvement in
decibel by the DA-PBT over the conventional 2-D DCT using 8 x 8 blocks, i.e.,
10 - log,q G'g‘T‘;Bl, is plotted in Fig. 3.6-(a) ,f and the improvement Yby‘ the KLT orig-
inally shown in Fig. 2.6 is included again in Fig. 3.6-(b) for reference. The source
is assumed to be the elliptic random field described with an additional Gaussianity
assomption as described in Sec. 2.3.1, modeling image textures with different degrees
of directionality and different orientations. For each set of the source parameters, the
DA-PBT mode with the highest transform coding gaivn is adaptively selected. For
‘the DA-PBT the slight devia‘tioni from orthonormality discussed in Sec. 3.1.2 is ne-
: glected such that the definition of the t_fansform coding gain in (2.21) for orthonormal
' transforms is still applicable. in Fig. 3.6, we COnsidef only the elliptic random fields
oriented from 0° to 90° due to the symmetry between the two sets of the directional
modes in the DA-PBT. For insfance, an elliptic random field with 6 = '45° is aligned
with the diagonal—dOwn—left mode and § = 135° is aligned with the diagonal-down-
right mode, and the two cases result in the same transform coding gain improvement.
| Being the transform that maximizes the coding gain, the improvement by the
KLT is certainly always il‘arger than that by the DA-PBT. Nevertheless, using only -
a limited number of modes and combinations of simple 1-D transforms, the DA-PBT
is already able to accomplish certain improvements. In Fig. 3.6-(a), the three peaks
from left to right correspond to the vertical-left, diagonal—down-left, and horizontal-up -
mode respectively, and the improvement from direction adaptation is larger for sources
with stronger directionality. Notice that there is no improvement by the DA-PBT for
sources oriented near 0° and 90°, i.e., the vertical and the horizontal mode are never
selected over the non-directional mode (2-D DCT). From Fig. 3.1-(3a), the vertical
mode, for example, essentially contains two 4 x 8 2-D DCTs. From-Fig. 3.3-(a) and
Fig. 3.3-(b), the 64 frequency bands in the 8 x 8 2-D DCT approximately divide each
of the 32 bands in the 4 x 8 transform into two bands, further reducing the weighted
geometric mean in (2.21). Therefore, the transform coding gain of the 8 x 8 2-D DCT ‘
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Figure 3.6: Transform coding gain improvement over the 8 x 8 DCT by (a) the -
8 x 8 DA-PBT, and (b) the 8 x 8 KLT. The source is the elliptic random field with
Ao = —In(0.8) fs, Ao = Ao/ ks where ky = 2, 4, 8, 16, and 32, and 6 from 0° to 90°. A
- darker line corresponds to a larger ky, i.e. , stronger directionality.

is never smaller than that of the 4 x 8 transform and the‘ vertical mode (and the
horizontal mode) is never selected in this aﬁalysis. . ’ ‘
In practice, the performance gain by the DA-PBT comes from firstly the direc-
tional frequency bands in the transform that increases energy concentration spectrally,
secondly the partitioning scheme that spatially concentrates energy, and thirdly the
more efficient encoding ofder. Only the first factor can be accounted for by the trans-
form coding gain analysis. The seéond is based on the premise that directional features
“only appear in some partitions, and hence it cannot be evaluated using the stationary
source model assuming same statistics in the entire block. The third factor cannot be
*éaptured by the analysis because of the independent coding assumption used in the
definition of the transform coding gain discussed in Sec. 2.3.1. To overcome some of
the limitations, we further develop the analysis using linear approximation as to be o
discussed Sec. 3.4.2. | |
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- 3.4.2 Linear Approx'imation
Linear approxirnation measures the MSE distortion in the reconstruction resulting
from keeping only a fixed set of the transform coefficients and setting others to zero
 [134,196]. In the context of comparlng the codlng performance of the DA-PBT and
* the 2-D DCT, we consider the fixed set to be the ﬁrst M coefficients along the encoder
order defined for each mode of the DA-PBT, and along the zigzag order defined for
" the 2-D DCT. ‘Note that this is different from the nonlinear approximation rnetric
also referred to as the energy packing efﬁc1ency in the analys1s in [219] that keeps
~ the M largest coefficients [134,196]. A , ,

Linear approximation reflects the combined efﬁmency of both the transform itself
and the encoding order. This is because an efficient transform concentrates the energy
_into a few coePﬁc1ents and these coefﬁments should be located in the beginning of ,
the encodet order so that the rnagmtude of the coefficients generally decreases along
the order a desirable property that can be later exploited by the entropy coder as
explalned in Sec. 3.2.2.

We denote the distortion for the 2-D DCT by DM Assume that the DA PBT
always selects the mode with the best linear approximation, and denote the resultlng
distortion by D}, ppp. Note that the rnodes are selected adaptively, and in this
tregard the approximation is no longer li‘near [134,196]. N oneth_eless, in each mode
~ the preserved coefficients are always the same,‘ and therefore the approximation in
this scope is still linear. Using M = 10, the linear approximation improvement
by the DA-PBT over the 2-D DCT in decibel, i.e., 10 - log D%ﬁ? is plotted in
Fig. 3.7-(2). Additionally, the 1rnprovement by the KLT is plotted in Fig. 3. 7-(b),
where the M retained coefﬁc1ents are naturally the ones having the largest variances, -
derived from the source model. Notice that, different from the transform coding gain

analysis in Fig. 3.6-(a), in Fig. 3.7-(a) the improvements near-0° and 90° from the

encoding orders of the vertical mode and the horizontal mode are clearly captured ’

by the linear approximation analysis and they follow closely to the case usmg the
optimal transform and ordering, i.e., the KLT. The other peaks also indicate that
significant improvements are enabled by the vertical-left, the dlagonal-down-left, and
the horizontal—up mode of the DA-PBT. ‘



CHAPTER 3. DA-PBT | 64

T 0 20 30 20 50 60 70 80 90 Oo 10 20 30 40 50 60 70 80 90
: A 0 (degrees) o 9’(degrees) »
() DA-PBT over DCT o (b)KLT over DCT

Figure 3.7: Linear approximation improvement over the 8 x 8 DCT by (a) the 8 x 8
DA-PBT, and (b) the 8 x 8 KLT. The source is the elliptic random field with A, =
—1n(0.8)fs, Ap = Ag/ky where k = 2, 4, 8, 16, and 32, and 4 from 0° to 90°. A darker
line corresponds to a larger kb, i.e., stronger directionality. - S :

3.4.-3‘- Rate-Dist'ortion Performance

Extending from the analysis in Sec. 2.3.2 that models the image-wise ratefdistortion

performance of the 8 x 8 KLT and the 8 x 8 DCT using the proposed irnage model, in

this section we further derive the model performance of the 8 x 8 DA-PBT. Note that o

this analysis is intended to model the relative performance of adopting the DA-PBT,
instead of the KLT or the 2-D DCT, in a general framework for transform coding of
images It is not meant to model the absolute performance of the propOsed‘image :
_coding system presented in Sec. 3.2. - ,
As discussed in Sec. 2.3.2, for every mode of the DA—PBT the model subband‘
variances around a block can be derived from the image model. Locally around
a block, we assume that eVery subband is coded independently from others, and
the coding performance achieves the rate—distortionfunction of Gaussian ‘rn‘ernoryless
'sources. As a result, numbering the 9 modes of the DA-PBT from m = 0 to m = 8,

* the'local rate-distortion performance around the b-th block in the image using mode
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Figure 3.8: Model rate-distortion performance of the 8 x 8 KLT, the 8 x 8 DA-PBT
and the conventional 8 x 8 DCT.

m can be expressed as

63 2,(m) 63
m 1 g ,8 m . (m
RV =&Y max{o, 5 logs "bT‘}’ D) =&Y min{x,o;{™},  (3.6)
s=0 8=0

where af”s(m) denotes the variance of subband s around the b-th block using mode

m, and A controls the rate-distortion trade-off. For this block, the adopted DA-PBT
mode is selected by minimizing the Lagrangian cost D,Em)(/\) + )—\R,(,m) ()), same as
the formulation in Sec. 3.2.1 but ignoring the signaling overhead in this theoretical
analysis, and A = 2In2- A as derived in [185]. Denote the mode selected for the b-th

block by m,, and the number of blocks in the image by Lg, the image-wise performance
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s

is then modeled by

Lp-1 , ) " Lp-1 ’ ) ' o :
- e ‘

ZR 'LB;D o (3.7)
The model performance of the DA-PBT for the teet »images shown in Fig. 2.1 is °
plotted in Fig. 3.8, together with the model performance of the KLT and the 2-D
DCT originally shown in F1g 2.8. Similar to the transform coding gain analysis in
‘Sec. 3.4.1, the model performance of the DA-PBT only captures the improvement :
from the transform itself. The potential gain from the block partitioning scheme
and the improved encoding order is unaccounted for. Not surprlsmgly, in Fig. 3.8
the performance gain from the DA-PBT i is limited compared to the maximum gain
achievable by the KLT. Nonetheless, in Sec. 3. 5 we shall see that for image coding in
. practice, the DA-PBT can indeed deliver significant improvements over the 2-D DCT

in rate-distortion measurements as well as in perceptiVe quality.

3.5 ‘Experimental Results

The performance of the DA-PBT is reported in this section. In the experimental re-
- sults, the adaptive deblocking filter (Sec. 3.2.1) and the simpliﬁed'_searCh (Sec. 3.2.3)
- - are enabled whereas the quantization matrices (Sec. 3.1.3) are disabled unless specif-

~“ically mentioned.

3.5.1 Still Image Coding

‘We‘ﬁrst present results using the 512 x 512 grayscale test images shown in Fig. 2.1.
The rate-distortion performance of .using various block transforms in image coding |
with only 8 x 8 blocks is ’plotted in Fig. 3.9 including (1) JPEG: baseline JPEG with
B entropy coding defined in [109], without quantization matrices and with the addi-
tional deblocking filter in Sec. 3.2.1, (2) DCTS: the 2-D DCT, (3) DDCTS in [219],
(4) DA-BTS: the direction-adaptive transform described in Sec. 3.1.1 without parti—
tioning, (5) DA-PBTS, and (6) DA-PBTS-full: DA-PBT not using the simplified
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Figure 3.9: Rate-distortion performance of 8 x 8 transforms for image coding.

search in Sec. 3.2.3, i.e., searching through all nine modes. The rates plotted in the
figure include the overhead signaling the selected blocksizes and modes.

From Fig. 3.9, it is clear that DCT8 outperforms JPEG because of the more
efficient entropy coder (Sec. 3.2.2). DDCTS only brings limited gain upon DCT8
whereas DA-BTS8 can improve the quality over DCT8 by more than 2dB for images
rich in directional features, mostly due to the more evenly spaced directions and the
more sensible scanning orders (Sec. 3.1.1). DA-PBTS8 keeps improving the perfor-
mance by spatially conﬁniﬁg energy within partitions while inducing less complexity
(Sec. 3.1.2). Finally, the gap between DA-PBT8-full and DA-PBTS indicates the
performance loss due to the simplified search, which is usually negligible considering

the significant reduction in complexity.
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of variable blocksize transforms for image

~ Fig. 3.10 further includes the rate-distortion performance of variable blocksize '

. transforms and directional intra prediction. DCT8 again denotes the 8 x 8 2-D
DCT, DCT and DA-PBT denote the 2-D DCT and DA-PBT with variable block-
sizes (4 x 4, 8 X 8, and 16 X 16) respectively, and ‘IAP(DCT) and IAP(DA-PBT)
denote directional intra prediction, again with variable blocksizes, together with the
2-D DCT and the DA-PBT applied to the prediction residual respectively (Sec. 3.3.1).
From Fig. 3.10, DCT typically provides limited gain over DCT8 except for Monarch

where the energy in the low-frequency content in the blurred background can be bet-
ter concentrated with larger 16 x 16 blocks. In addition, DA-PBT and IAP(DA-
PBT) outperforms DCT and IAP(DCT) respectively, and the gain generally in-

creases with the number of sharp directional features in the image. The gap between
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. IAP(DA—PBT) and IAP(DCT) is usually smaller'_'than that »between DA-PBT
and DCT. This is because in many cases the residual energy is small so that the.
itransform coeflicients are all quantized to zero regardless of which transform is ap-

plied, leading to the same rate and distortion. As an extreme example, with perfect
intra prediction the residual is zero and the transform does not at all affect the coding
' performance Comparing IAP(DCT) and DA PBT directional intra prediction is

‘usually more efficient than the directional transforms for being able to utilize the
correlation across block boundaries. However, compared to the prediction-based ap-

proach, the transtrm—based appr‘oaeh possesses two main adVantages " First, with a -
- proper design of entropy coding and bitstream organization, each macroblock (or 4x4

, macroblocks when an additional 4 x 4 transform is applied as in the proposed approach’
described in Sec. 3. 2. 1) can be decoded independently from others, prov1d1ng better

support for random access and error resiliency. Second, both block—w1se and- 1mage-

: Wise the transform is close to orthonormal, allowmg embedded (quahty—progresswe)

| coding of images [170 213]. ’

- To demonstrate the 1mprovement in v1sual quality using the DA-PBT, a 256 X 256 '
region of Pentagon is shown in Fig. 3.13- ( ), and the corresponding reconstructions

from DCT, DA-PBT, IAP(DCT) and IAP(DA-PBT) using the same quanti-

zation stepsize are shown in Fig. 3.13-(b)~(e). The DA-PBT, applied both to the

image and to the intra residual, greatly reduces the ringing and checkerboard arti-

_ facts around edges observed in the DCT-based schemes while demanding less rate.

DCT with a rate comparable to that in IAP(DA’-PB’I_‘)A (Fig. 3.13(e)) is shown
- in Fig. 3.13(f), demonstrating the adrfantages of exploiting directionality in the im-

ages for image compression, both in the prediction and in the transform. Similar

observations can be made for Monarch as shown in Fig. 3.14.

3.5.2 Video Coding
To evaluate the performance of the DA-PBT for video coding, we implemented a video

coder that divides the video frames into I-pictures and P-pictures, and the 16 x 16

macroblocks in these pictures are categorized into three modes, INTRA, INTER, and

A
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" Figure 3.11: Rate-distortion performance of usmg the 2-D DCT and the DA-PBT for
video coding with all I—plctures

SKIP, similar to those defined in H.264 [206]. The macroblocks in the I-pictures
are all in the INTRA mode and are encoded using either IAP(DCT) or IAP(DA-
PBT) as described above for regular images. For the P-pictures, each macroblock
can be in one of the three modes. The INTRA macroblocks are again encoded by
IAP(DCT) or IAP(DA-PBT). The INTER macroblocks are first predicted with
motion—compensated inter prediction using 4 x 4, 8 x 8, or 16 x 16 blocks, and the
residual blocks are encoded using either the 2-D DCT or the DA-PBT, denoted by
IRP(DCT) and IRP(DA-PBT) respectively. A SKIP macroblock directly copies

“a macroblock from the reconstruction of the previous frame using motion compen-

sation with a motion vector derived from the causal neighborhood [206]. Motion-

compensated inter prediction is realized similarly to H.264 with quarter-pel accuracy -
and a search range of £32 x £32 pixels. To quantize the transform coefﬁciente, the
quantization parameter Q.64 (Sec. 3.2.1) for the P-pictures is set to be one more
than that for the I-pictures, and the parameter A (See. 3.1.3) is set to 3 for INTRA |
and ¢ for INTER macroblocks [202]. The quantization indices and the overhead sig-
| naling all the mode and blocksize selections are encoded using CABAC-like entropy .
coding as discussed in Sec. 3.2.2, whereas the motion vectors are first predicted from
causal neighborhoods and then encoded using a fixed variable-length-coding table.

We consider two coding arrangements: all I-pictures and one I-picture in every 15
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" . Figure 3.12: Rate-distortion performance of using the 2-D DCT and the DA-PBT for
v1deo coding with one I-picture followed by 14 P- plctures

frames. The performance of the correspendihg baseline method -using the 2-D DCT '
is denoted by IAP(DCT) in Fig. 3.11 and IAP(DCT) + IRP(DCT) in Fig. 3.12
‘ resbectively for the CIF sequences Foreman and Carphone. To benchmark the im-
plemented baseline methods, the rate-distortion_performaﬁce of the H.264 reference
software JM 13.2 is also included, denoted by JM 13.2 I15 in Fig. 3.11 and JM
13.2 IP14 in Fig. 3.12 for the two arrangeinents fespectively,' using the High Profile
(FRExt) that additionally enables 8 x 8 intra prediction and transforms [111,141].
From Fig. 3.12, at high rates IAP(DCT) +IRP(DCT) is evidently less efficient
than JM 1‘3.2 IP14 due to several simplifications in our implementation. For in-
Stahce, the High Profile in H.264 allews the 4 x 4 or the 8 x 8 transform to be selected
adaptively in INTER macroblocks [141], whereas in our implementation the size of
the transform is coupled to the blocksize used in motion-compensated predi.ction.
" Nonetheless, the implefnented coder in general delivers performance comparable to
the state-of-the-art video coding standard. |

" For using all I-pictures, compared to IAP(DCT) IAP(DA-PBT) on average
. improves the reconstruction quality by 0.51dB for Foreman and 0.66dB for Car-
phone, and, equivalently, reduces the rate by 9.0% and 10.5% respectively as shown.
in Fig. 3.11. Furthermore, instead of using the same mode for t’he' DA-PBT and

directional intra prediction, the performance of considering all of the nine DA-PBT
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modes regardless the intra prediction mode selected is also included in the figure,
denoted by TAP(DA-PBT)-full. The performance loss from using the same mode
is generally acceptable considering the additional computation required to evaluate
the rate and distortion associated with all the other DA-PBT modes.

For the arrangement with inter prédiction, the DA-PBT can be applied to the
INTRA macroblocks, denoted by IAP(DA-PBT) +IRP(DCT), or additionally to
‘the INTER macroblocks, denoted by IAP(DA-PBT) + IRP(DA-PBT) in Fig. 3.12.
~ As discussed in Sec. 3.3.2, IRP(DA-PBT) considers at most one directional mode
of the DA-PBT. The séheme that enables all nine modes of the DA-PBT to be se-
lected for both the intra and the inter residual blocks is denoted by IAP (DA-PBT)-
~full + IRP(DA-PBT)-full and is also included in the figure. Although in Fig. 3.11
IAP(DA-PBT)-full outperforms IAP(DA-PBT), considering all DA-PBT modes
for the iﬁter residual as in IAP(DA-PBT)-full + IRP(DA-PBT)-full surprisingly
deteriorates the performance. Despite the /additional'ﬁéxibility, IAP(DA-PBT)-
full—i—IRP(DA-PBT)-fﬁll no longer achieves better rate-distortion performance
than IAP(DA-PBT) 4 IRP (DA-PvBT) because of the increased overhead for the
INTER macroblocks that offsets the potential gain (Sec..3.3.2)..' On a.verage,bom—
pared to IAP(DCT) +IRP(DCT),IAP(DA-PBT) + IRP (DA-PBT) improves
‘the quality by 0.22dB for Foreman and 0.27dB for Carphone, and equivalently re-
duces the rate by 5.5% and 6.6% respectively. Similar to comparing the effectiveness
of the DA-PBT on image blocks and intra residual blocks, the DA-PBT is less effec-
tive on inter than intra residual since inter prediction is typically more accurate and
leads to smaller residual energy. This contradicts the observation in [219] where the
DDCT is more effective on inter residual blocks rather than on image blocks. We
conjecture that this is due to the less accurate motion compensation adopted in [219]

that always uses 16 x 16 blocks and a search range of mere £7 x +7 pixels.

3.6 Summary

We have proposed a new direction-adaptive partitioned block transform (DA-PBT)

for coding of images and video sequences. The DA-PBT outperforms the conventional
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2-D'DCT by more th_an 2dB for images with pronounced‘d’irectional features. Since

it ‘avoids the.typical‘ ringing and checkerboard artifacts of the 2-D DCT,. suf)jective

' improvements are evenflarge'r than indicated bythe"rate-distortion performance. The

DA-PBT also outperforms a previously proposed directional DCT while demanding

- less computatlon owing to an improved directional selectrvrty, d1rectron—adapt1ve‘
, partitioning and better coefﬁc1ent ordering for entropy coding. As for conventional

block transforms, the DA- PBT achieves its best performance when combined with

adaptive blocksizes. To exploit the frequency response of the human visual System,‘ 7'
“quantization matrices can be used with the DA-PBT. We show a. straightforward
way to transform JPEG quantization matrices into the directional transform space,
thus avordlng cumbersorne subJectrve tests. :

‘We have also explored the combination of the DA- PBT with predlctlve coding,
either directional prediction within the i 1mage or interframe predlctlon for video. For
“ intraframe d1rect10nal prediction, the direction selection for the pred1ct10n and the
transform can be elegantly combrned It is not surpr1s1ng that the gains -of both
.techmques are not additive, as srmllar signal propertres are explorted by the predic-
tion and the transform. Since the DA-PBT operates in a block-wise manner, the |
incorporation into block-based motion-compensated videocoding is straightforward.
~ Alas, We have not been able to demonstrate s1gn1ﬁcant gains by compressing the
~ motion-compensated predlctlon resrdual with the DA- PBT when advanced. motion
compensation is used for our relatively simple test sequences. The DA-PBT might
still have a role to play for video coding, at least for 1ntra-coded blocks, or where

motlon—compensated predlctron is not fully effective.
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(2) original " (b) DCT (0.28 bpp, 28.88dB)
i
! )
(c) DA-PBT (0.27 bpp, 29.18dB) (d) IAP(DCT) (0.26 bpp, 28.96 dB)
() IAP(DA-PBT) (0.25 bpp, 29.31dB) (f) DCT (0.25 bpp, 28.52dB)

Figure 3.13: Reconstruction of a 256 x 256 region in the Pentagon image.
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Figure 3.14: Reconstruction of a 256 x 256 region in the Monarch image.



Chapter 4

Direction—Adaptivé |

Discrete ‘Wavelet Transform

In the previous chapter, we have shown that the DA-PBT, as a block tfénsform_, can be
easily combined with block-based predictive coding widely adopted in image and video
coding techniques. However, due to the block-wise operatidn, the transform is unable
to exploit the correlation across blocks. Moréover, at lower ’rates, the réconstruction
exhibits severe blocking artifdcts, requiring additional deblocking filtering to parti‘ally
mitigate them. Alternatively, image ching with' the wavelet transform applied over
the entire image is free of blocking artifacts and often leads to better performance both
in rate-distortion measurements and in visual quality. In this chapter, we propose
a direction-adaptive transform based on the wavelet tranéform, referred to as the
direction-adaptive discrete wavelet transform (DA-DWT). For image coding, the
best mode of the DA-DWT is selected at the encoder for each image block using a
rate-distortion optimized framework and signaled to the decoder as side information.

In Sec. 4.1, we describe how different modes of the DA-DWT are constructed
using directional lifting. A practical image coding framework using the DA-DWT is
discussed in Sec. 4.2. Theoretical ‘analysis of the DA-DWT and performance evalu-
ation using the image model proposed in Chap. 2 are preserited in Sec. 4.3. Finally,
experimental results der_noristr‘atingrthe superior performance of the DA-DWT both

objectively and subjéctively are included in Sec. 4.4.

76
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4.1 Construction of DA-DWT

- 4.1.1 2-D DWT with Lifting
The conventional 2-D DWT in general consists of two stages. In Stage 1, the anal- -
ysis filters of the 1- D DWT are apphed to the image vertically followed by vertical
- subsampling to obtain the low-pass. subband L, and the hlgh-pass subband, H. In
 the second stage, the analys1s filters are again applied to L and H horizontally, fol-
~ lowed by horlzontal subsamphng to obtarn the LL and LH in Stage 2-L, and the HL
and HH subband in Stage 2-H respectlvely It is shown in [179] that any two-band o
biorthogonal DWT can be factored into pairs of lifting steps. We limit the discussion
* to wavelet trarn‘sforms that can be realized with one pair of the lifting steps, i.e., one
predictioh step followed by one" update step. For instancev the Haar wavelet épnd the |
family of interpolating wavelets all belong to this category [16 47] L
Let s = {s[l] | 1 € II}, where 1 = (I, 1, )T and s[l] = s[l;, 1], denoté a set of
image samples on a 2-D orthogonal sampling grid I = :{(lx, 1,)T € Z*}. The grid I
is composed of 4 sub-grids: II,, = {(ls, lg)T eIl | I, mod 2 = p, l; mod 2 = gq}:
To apply‘the 2-D DWT with lifting, we first apply a Stage—i transform between the -
even and the odd rows of the image, i.e., between so = {s[lo} | 1o € I, =TIy U H()‘l}‘
and s; = {s[ll]ﬂ/l ; € IT) = Iy U I1;;}. Denote the reSulting low-pass subband by
wo = {wo[lo] | lp € Io} and the high-pass subband by w1 = {wl[ll] |1, € I'Il} the

lifting steps can generally be expressed as -

will] = gz - (sl] - By (50)), V L€ Thy,  (41a)
wollo} = gz - (s[lo] + 95" 'AUlo (Wl)?, Ve HOa | (4.1b)

where the prediction function, Py,(-), and the update function, Uj,(-), are functions
of the sample values in the input with a scalar output, and g; and gy are scaling |
factors. The Stage-1 transform is realized by first performing the prediction step in
(4.1a) followed by the update step in (4.1b) so that s is decomposed into wo and wy.

" To reconstruct s from Wy and ‘wy, the inverse transform can also be realized by the
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following lifting steps: |

sflo] = g7 - wollo] — g5" - U (w1), V lo€ I, (4.2a)
3[11] = gI_Il . wl[ll] -+ P]l (So), vV 1, e I1;. o A‘ - (42b)

- Using the lifting steps, the prediction function B, () and the update function Upy(-)

can be space—varylng or even nonlinear without affecting the rever31b1hty of the trans-

form as shown in (4. 1) and (4. 2) ‘This property has been utilized to design locally =

~ adaptive transforms for image coding (13, 26, 30, 40, 53, 79, 80, 182, 201] video cod- |
ing [133 152, 168], and light field compress1on [31,32,83].
Similarly; the transform between the even and the odd columns of the samples

further decomposes WO in Stage 2-L into wgo and wy;, defined on ITyy and Ily

respectlvely, and decomposes w1 in Stage 2—H into W1 and w11, defined on IT;o and - a

Hu respectlvelyz where wqg, Wo1, W19, and Wi correspond to the LL, LH, HL, and
HH subband of the image respectiveiy We refer to this‘prOcess of decomposing the
image samples s into the 4 subbands as one level of the 2-D DWT. Multlple levels of -
the transform may be performed by iteratively applylng this process to the resultlng
LI subband.

4.1.2 Directionald Lifting
| In the conventlonal 2- D DWT, the predlctlon and the update functlon in (4 1) can

be expressed as

‘ - Kee , . : :
B (so) Z CPk S[ll ol (2k+ 1)],  (4.3a)
k=—Kp S
Ky—1 ’
Ulo W1 Z Cuk * wl[lmu (2k+ 1], , (4.3b)

k=—Ky

where K P, ¢k, Ku, ahd Cuy are determined by the wavelet kernel adopted. For

.

instance, for the popular 5/3 filter pair [42,77], Kp = 1 with cp_1 = cpo =

- Ky =1 with Cu—1 = Cup = %, and gz and gy are customarily set to \/5 and

S
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respectively [47,179]. Note that only samples in the same column are involved in the
transform. , | | |
For image compression, for each sample in the high-pass subband, wl 1], it is gen-
erally desirable to select a prediction function R, (so) in (4.1a) that predicts s[l;] from
the samples in sg such that the energy in the residuai wy[l;] is minimized and most
energy is co’ncentreted in the corresponding low-pass subband wo[lo]- In the proposed
. DA-DWT, we define directional prediction ﬁlters with dlI‘eCthIl d= (dx, d,)T from
which B, (sp) can be adaptively selected as '

’ Kp—1 o
Pl(so)= Y cpr-sh—(2k+1)d], (4.4)
M . .
wher_e d is defined such that
L—(2k+1)delly, ¥ L ell, k=—Kp,--- ,Kp—1. (45

The directional prediction filter corresponds to performing the prediction step along a
~ Stage-1 direction d. From (4.5), de7? and d, is alvs}ays odd. We further constrain d
such that the line segment from (0, 0)T to (d;,d,)T does not intersect with any other
point in IT, i.e., d, and d, are coprime integers. For instance, the followmg directions
are used in our previous work in [26]: (—3,1)7, (=2,1)7, (- L,1)7T, ( 1,3)7, (0,1)7,
(1,3)7, (1,1)7, (2, 1)T; and (3,1)7. | | -

| Denote the direction selected at location 1, for A, (so) as dj, . Upon completion
of the prediction step of all samples, the corresponding update function in (4.1b) is
defined as | | '

Ky~1

Up(wi) = Y cuk- | Dy willy]. | (4.6)

k=—Ky {11 ] ll—(2k+1)dr1 =¥o}

In words, wherever an image sample sl,] is predicted by cp - s[lo], s[lo] is updated by
cuk-wili]. Note that if direction (0, 1)” is always selected, i.e., dj, = (0,1)" V1, (4.4)

and (4.6) are equivalent to the functions in (4.3) and directional lifting is identical to
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the conventional DWT
For the second stage of the transform further apphed to Wo and w3, the transform
is apphed along a Stage-2 d1rectlon d= (dm, d BER where d, and d are again coprlme

1ntegers and d, is odd and d is even. Consequently,

g — (2k + l)d €My, In—(2k+1)d e Hlo{j, N o (4N
- V loy € gy, 113 € Hu, k= —KP,"' ,Kp—1. |

‘The resultlng candldates for the prediction functlon and the correspondlng update

. function are defined s1m11arly as in (4 4) and (4 6). Note that the d1rectlon selected

 for Stage 2-L and Stage 2-H can be different in general

, Several other approaches in the hterature that also enable d1rect10nal adaptatlon
through lifting essentially adopt a set of sub-pel d1rectlons achieved by spatial interpo-.
lation, e.g., d = {(K, T, i=-K,- K} ‘where K is typically 2 or 4 [53,182,201]. -
- These approaches assume d,, = 1 (and d; = 1) whereas the proposed DA-DWT frame-
-work only requires dy, (and d;) to be odd. In the experimental results as well as the
mathematical analysis reported in [26], we have shown that using integer samples,
e.g., (—1,3)7, directly for prediction is typically more efficient than using the inter-
polated ones, e.g., '(—%, 1)T, in the presence of sharp image features. Additionally,
ithe integer directions do not involve sub-pel 1nterpolatlon and hence require less
»computatlon ‘ '

Furthermore in the sub-pel approaches only the directions between +45° from
the vertical axis are considered in Stage 1. For horizontal-ish i image features, there
is no closely aligned filtering directions and thus the energy is spread into the high-
pass subband H. As a result, for imagecompressionthey favor vertical-ish image
features, and therefore are sensitive to image transposition. In our previous work [30],
"'quincunx subsampling was adopted to provide directions covering the 2-D space more
| evenly and has shown reduced sensitivity to image transposition. However, DWT
" coding using quincunx subsampling is less efficient for typical images [87]. In the
proposed DA-DWT, we retain the conventional orthogonal subsampling as descrlbed
" in Sec. 4.1.1 and allow integer directions beyond +45°, e.g., (-2, l)T to prov1de a
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Figure 4.1: (a) The direction-pairs in the 9 modes of the DA-DWT. The solid lines
(jen(jte‘ the Stage-1 directions d, and the dashed lines denote the Stage-2 directions
d. (b) The impulse responses of the analysis filters of one level of the DA-DWT using

the 5/3 filter pair. In each mode, the four plots correspond to the (top-left) LL,
(top-right) LH, (bottom—left) HL, and (bottom rlght) HH subband.

larger directional span, instead of using the limited set of sub-pel directions. Similar to
the case with quincunx subsampling, reduced sensitivity to transposition is observed.

The mathematical analysis in [26] also agrees with this observation.

4.1.3 Dlrectlon Palrmg

To apply the DA—DWT to an 1mage region, in general three directions need to be
determined in Stage 1, Stage 2-L, and Stage 2-H of the transform as described in our
~ previous work [26]. In practice, these directions are usually aligned with the image

features so that the energy in the high-pass subband is minimized. Consequently,
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Figure 4.2: The frequency responses of the 2-D analysis filters of one level of the
DA-DWT using (a) the 5/3 filter pair, and (b) the sinc wavelet. In each mode, the
four plots correspond to the (top-left) LL, (top-right) LH, (bottom-left) HL, and
(bottom-right) HH subband. Each plot represents the 2-D discrete-space frequency
—m < Q < 7 from left to right and —m < €2, < 7 from bottom to top.

corresponding Stage-1 and Stage-2 directions are usually selected. For instance, the
pair of d = (0,1)7 for Stage 1 and d = (—1,2)T for Stage 2-L and 2-H is likely to be
selected if vertical-ish features appear in the region.

We identify 8 such pairs that cover a variety of feature orientations, and they
constitute the 8 directional modes of the DA-DWT shown in Fig. 4.1-(a) (Mode
1~8) together with Mode O that falls back to the conventional 2-D DWT. Different
modes are adaptively selected according to the image features contained in local image
regions. Additionally, the impulse response of the resulting 2-D analysis filters of one
level of the DA-DWT using the 5/3 filter pair are shown in Fig. 4.1-(b). Different
from the filters in the conventional 2-D DWT (Mode 0), the directional modes use



CHAPTER 4. DA-DWT - 8

elongated and orientéd‘2-D~ filters that are realized by cascading sim'plev'l-D lifting
steps. The corresponding frequency responses of the DA-DWT uSing the 5/3 filter .
pair are shown in Fig. 4.2-(a). If a hypothetical sinc wavelet that requires an 1nﬁn1te

2k+l) KU = OO Wlth Cuk = Cp,k,>

support is used, i.e., K} p =00 with cpp = smc(
and g, = V2 and gy = \/5 . (4.3), the resultmg frequency responses are shown
in Fig. 4.2-(b). Using the sinc wavelet, the 2-D frequency space is partitioned by
the DA—DWT‘ into 4 directional sﬁbbands Wlth the practical 5/3 filter palr, the
subbands overlap but still retain the desired directional supports.
 Note that we only include directions with a maximal d1splacement of 2 in each

~dimension, i.e., |dg], |dy|, |dz), |d,| < 2. This ensures that the size of the filter support -
- does not increase much from the conventional 2-D DWT'in order to reduce the rihging‘ '
‘artifacts at low rates. The number of modes can be increased to ha.n}dlev more feature
orientations. Nonetheless, through ekperiments we fouﬁd that using more "chan,the
proposed eight directional modes provides only limite‘d. gain for typical images.

4.2 Image Coding with DA-DWT
' 4.2.1  Direction Selection

For image coding, the DA-DWT modes selected at the encoder need to be signaled to
the decoder so that the transform can be properly reversed to-reconstruct the image
samples. The modes should be selected to minimize the distortion of the reconstructed
image for a given rate budget. The rate budget is spent on the overhead required
to signal the selection and the rate for codlng the wavelet coefficients. To reduce
‘the amount of the signaling overhead, the modes are selected in a block-wise fashion.
Finding the 'best"DA-DWT modes is therefore analogous to rate-constrained block- |
based motion estimation in video coding [82,204,205]. | | ‘
| ‘Assume L levels of the DA-DWT are to be applied to an image to decompose
the image into 3L+ 1 subbands We divide the image into ma.éroblocks of Sg x Sg |

pixels. Each macroblock may contain a single Sg x Sp block, or be further divided

mtoblocksofSB><,5’}_;»,,5’B><S2B,52’9><§42 SBxSB,SBxS—B S—Bx‘—qg S—BxSB or
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%B X %B pixels. Every block is assigned one of the nine modes of the DA-DWT.

Ideally, for each macroblock the best blocksize /and the mode in each block are
selected as the blocksize and mode combination that minimizes a Lagrangiah cost
function D, —|—»)_\(Rc + R,), the same as for the DA-PBT discussed in Sec. 3.21. In
this cost function, D_c denotes the distortion (sum of squared error) in the Tecon-
- structed macroblock, vl_?.c and R, denote the number of‘bits required to encode the -

transform coefficients and the overhead signaling the selection respectively, and Xis
the Lagrangian multiplier set to 0.85.2(Qu264-12)/3 where Qu.264 depends on the target
quality and carr be mapped into a quantization stepsize as defined in H.264 [206].
" Different from the DA-PBT, the DA-DWT (or DWT in general) is not a block
transform and filtering in the prediction and the update step extends across block
_ boundaries. Therefore, the transform coefficients in the currentv block depends rlot~
only on the mode selected for the block, but also on the modes in all of the neighboring
blocks, making it impossible to evaluate the distortion and rate without knowing the
‘ modesvin the Subsequent blocks. Furthermore, entropy coders designed for non-block-
transforms such as the DWT may not necessarily work in a block-by-block manner. "
Evaluating the' rate for encoding the coefficients in a block can thus be difficult. As}a‘ |
‘srimpliﬁcation, we first approximate the transform coefficien_ts in the current block for
- a certain mode by applying the DA-DWT assuming that the same mode is selected
in all the involved neighboring blocks. Additionally, instead of using D, + X(R,+ R;),
the cost function S, + VAR,, where S, is the sum of absolute values of all the wavelet
coefficients in the macroblock, is adopted as it has been shown to be an effective
alternati;\re in rate-constrained motion estimation [204,205]. R .

Once the blocksize and the corresponding modes have been’ selected for eVery
macrobleck, the actual transform coefficients of the entire irné,ge are gerlerated by first
performing the prediction step in the Stage-1 transform as described in (4.1a) and
(4.4) with the selected locally varying directions. Upon completion of the predictiorl
step for all the samples, the update step in the Stage-1 transform is performed as in
(4.1b) and (4.6), followed by the lifting steps in the Stage-2 transforms. The process
is iteratively applied to the resulting low-resolution LL subband to achieve multiple

~levels of the transform. Note that because filtering extends across block boundaries,
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unlike the DA-PBT, blocking artifacts are usually absent in the reconstructed images
and therefore deblocking filters are not needed.
In the above discussion, we consider the case where the L levels of the DA-DWT

. share the same blocksize and mode selection. In general, at different resolution levels

. of the transform, the macroblock-size and the selected blocksizes and modes can all .

be different, requiring a separate selection procedure at each level of the transform as
in [26,53]. This may be beneficial for high-frequency periodic pa.tterns in the image
such as fine stripes, since at different levels the patterns may appear having different
orientations due to the aliasing from downsampling. Nevertheless, we observed that
for most image features it is sufficient to select the same mode across resolution levels
because the feature orientations are usually resolution-invariant.

At block boundaries, using the Stage-1 transform for example, a sample at Ip € I
may be used to predict sainples in IT; in more fha._n one directions. This happens
when, for instance, n({ly | 1} +df =1lo}) > 1, where n(A) denotes the cardinality of
set ‘A, analogous to the situation of multiply-connected piﬁcels in video coding with
motion-compensated temporal filtering [145]. Meticulous rules have been developed
to cope with this situation in ordef to make adaptive transforms reversible, both for
video coding [145] and image codmg [151,200]. Owing to the lifting structure, the

- proposed DA-DWT does not require these rules and rever51b111ty of the transform is
always ensured as shown in (4.1) and (4.2).
~ The situation of multiply—conneeted pixels also incurs ambiguity in the direction
of the update step. The update functions we propose in (4.6), a.nalogeus to the

“barbell lifting scheme for video coding [210,211], has been shown to ach‘ievebetter
compression performance than the update functions in [52,53] and [30], analogous to
using the reversed motion vectors in the update step [210]. The discussion i in Sec. 4:1.2
is limited to wavelet kernels that can be realized using one pair of the hftmg steps. For
kernels that can only be constructed with multiple pairs of hftlng steps, such as the
9/7 filter pair [47,179], a more complicated update scheme is required to improve rate-
distortion efficiency and reduce coding artifacts around block boundaries, as studied g
in [129]. | |

All the aforementioned update schemes a.pphed at block boundaries are based.
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i
i

Figure 4.3: The selected blocksizes and the DA-DWT modes for the 512 x 512 image

Monarch. Each macroblock contains 64 x 64 pixels. The Stage-1 directions d for the

- selected modes are shown on the left, and the Stage-2 directions d are shown on the
right. In this example, the Lagrangian multiplier X is determined by Qu.oss = 34,

~ corresponding to a quantization stepsize of 32. The resulting overhead signaling

these selections is coded at 0.005 bpp, and the rate to encode the coefficients with -

this quantization stepsize is 0.28 bpp with a reconstruction quality at 32.32 dB.

on heuristics and are hence in general suboptimal. The optimal upda'te functions:
_ require rather intensive computation and therefore are not adopted in pr‘a,ctice [84,85].
| Consequently, although using smaller blocks for direction selection may provide better
adaptation to the image content, the increased number of samples at block boundaries
and the accompanied suboptimal update functions might on the contrary lead to a
higher distortion. For this reason, in the DA-DWT we typically use macroblocks of
64 x 64 pixels, larger than the 16 x 16 magroblocké used in the DA-PBT as discussed

in Sec. 3.2.1. An example of the selected blocksizes and modes are shown in Fig. 4.3.

3

4.2.2 Entropy Coding |

Perhaps the most important motivation to use wavelet image coding is to obtain
‘an embedded image representation, typically achieved by coding the transform coeffi-
cients with an embedded bitplane coder [166,171,183]. At the encoder, the coefficients
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are coded bitplane by bitplane at high precision; the decoder can éither retrieve the
full bitstream to recover all the bitplanes encoded and hence a high-quality recon-
struétion, or only decode partial bitplanes, at a lower rate, to reconstruct at a reduced
quality. This property is especially useful for progressive transmission of imagés over
networks. | -

Since the DA-DWT coefficients can be arranged in the same way as the corre-
sponding 2-D DWT coefficients, as they share the same number of subbands and the
same number of coefficients in each subband, any embedded bitplane coder .designéd
for the 2D DWT may be used fo r the DA-DWT.V In our implementation, we adopt
the TCE coder for its open accessibility and superior performance {74,173, 186].

To enable an embedded representation, the decoding rate; hence the decoding
quality, is not known a priori at the encoder. To select the blocksizes and the
DA-DWT modes, the choice of the Lagrangian multiplier X as described in the pre-
vious section, however, must anticipate a certain decoding quality. On one hand, if
the anticipated qual‘ity at the encoder is higher than the actual one, the resulting ) is
smaller than the ideal value, leading to an unnecessarily detailed direction representa-
tion and an excessive signaling overhead. On the other hand, if the anticipated quality
is lower, the consequent selections may not fulfill the full potential of the DA-DWT.
As a compromise, we generally select Qu.64 = 34, corresponding to a quantization
stepsize of 32, for the choice of )\, as this usually leads to a reconstruction around 30
to 32dB and below 0.4 bpp for typical images, where the'Visﬁal improvements from
the DA-DWT is most prominent, as we shall demonstrate in Sec. 4.4.

To encode the direction representation, for each block a 1-bit symbol is used
to indicate whether Mode 0 is selected. If this is not the case, the selected mode
is predicted from the blocks in the causal neighborhood, similar to the prediction
mechanism described in Sec. 3.2.2, and the residual is coded using variable-length
coding with a fixed codeword table. Additionally, if all the blocks in the causal
neighborhood have selected Mode 0, the current selection is coded directly without |
prediction. For each macroblock, the selected blocksize is also coded with variable-
length coding. | , _

In the scope of our discussion, we consider only lossless coding of the selections.
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The entiréty of the signaling overhead is always transmitted to the deéoder regardless
of the decoding rate. At lower decoding rates, the overhead can take a significant
portion of the total rate available, leaving limited rate for the transform coefficients.
vIn [216], we hdveb developed an approach to allow lossy coding of the selections in
order to provide an embedded direction representation, analogous to the embedded
representation of motion vectors in video coding [169, 212] With this approach; the
decoder is able to retrieve a coarser direction présehtation, atAa lower sigﬁaling rate,

if the total decoding rate budget is limited.

4.2.3 Computational Complexity

To implement the DA-DWT, a straightforward method is to first carry out each of
the 9 modes for the whole image and record the sum of absolute values of the re-
sulting wavelet coéfﬁ‘ci_ents in every ’-‘?f’— X ‘%B block, the smallest blocksize adopted in
the framework. Once the sum of absolute values are available, the direction selection
procésé can be ‘performed entirely based on these values. Last, the actual transform is’
applied using-the selected blocksizes and modes to generate the ﬁnal,coefﬁcients.' As‘
a result, 10 iterations of the wavelet transform are performed at the encoder. Assum-
ing that, in a-conventional wavelet-based image ehcoder, the transform contributes
to around 50% of the total computatioh as reported in [1] for JPEG2000, an adap-
tive encoder based on the DA-DWT thus requires 5 to 6 times the computation as a
conventional encoder. Although not included in our implementation, the complexity
may be .reduced by the approach described in Sec. 3.2.3 propoSed for the DA-PBT.
The approach first perfofms simple image analysis locally to identify the local di-
rectionality so that at most one directional m’_ode,‘ in addition to the conventional
transform, is applied to every block. This can cut down the encoder icomplkexity to
~less than -twice the compﬁtation as a conventional encodef. Note that the decoder
complexity is about the same as a convenfional decoder since only the mode selected

at the encoder is performed at the decoder.
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4.3 Theoretical Analysis of DA-DWT

- In this section, we provide theoretical analysis of the performalice gain resulting from
adapting the wavelet ﬁlterlng directions. We first relate the frequency responses of the
directional filters in the lifting steps with the underlylng Wavelet kernel. Using these
' frequency responses, the power spectral density (PSD) of t,hehlgh-pa.ss and the low-
- pass subbande is then related to the PSD of the image samples. The transform coding
“gain is then analyzed to quantify the performance gain _egainst the conifentiohal 2D
DWT. ’ ' -

4. 3 1 Dlrectlonal Filtering in Llftlng

As described in Sec. 4.1, to apply the 2-D DWT to image sa.mples s[l] 1= (lm,l Ye
V/ ‘using lifting, s[l] is first vertically subsampled into the even rows, so[l] = sl 2ly]
and the odd rows, s1[l] = s[l,, 21, + 1] Slmllar to (4.1), the predlctlon and the update

. step in hftmg can be expressed as

il =g (0]~ K0 e sol),  (4s)
woll] = gz * (soll] + g5 - (R [l] * wa[1))),  (4.8b)

where wy(l] and w, [l] denote the high-pase and the low-pass coefficients respectively,
hd [l] and h@l] denote the 2-D impulse response of the directional filters in the lift-
ing steps along direction d = (d, d, ‘)T the symbol * denotes the 2.D ‘convolution
~ operation, and gL and gy are scaling factors. In the following d1scussmn functions
denoted by an upper-case letter in the form of A = A(eH= e7h) represent
the 2-D discfete-spa.ce Fourier transform of the corresponding discrete-space signal
all] = ally,1,]). We start the analysis by deriving H3(e’?) and Hg(ejﬁ)‘as flinctions
of the filtering direction d and the adopted wavelet kernel.- - |
To facilitate the analysis, we define So[l] as the upsampled soll], i.e.,

. A” : sollzy1,/2], [, is even, o
ol = il ] = { olles /2], 1y "

10, 7 ly is odd.
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Following the discussion in Sec. 4.1.2, we further define the 2-D directional prediction |

filters applied to $y[I] by the impulse response hS[1], -

ey , 1=(2k+1)d, k=—-Kp,---,Kp—1,
3 = { cpi 1= (2K +1) i i (4.10)

0, otherwise,

where Kp and ép’k are determined by the wavelet kernel adopted. In the conventional
DWT, fz‘}," 1], do = (0, 1)T, is always used, corresponding to vertical filtering with the
prototype 1-D prediction filter, hplt], defined as

hplt] = h§[0,1], tEZ. - (4.11)

~ Denote the 1-D discrete-space Fourier transform of plt] by H p(ejQ‘).‘ We continue
the analysis by relating H3(e/®) with Hp(e’®). As defined in Sec. 4.1.2, d, and d,
are coprime, i.e., their greatest common divisor is 1. From Bézout’s idéntity [108],
there is at least one direction, d = (d, d,)T € Z?, such that |

@@—@%:L' | @1
Therefore, a generator matrix deﬁned' as
W= ( Z:; Z; > : - | (4.13)
is a one-to-one mapping from Z2 to /e [81], ie., |
{ 'Y =WL V1eZ?} = Z"’.’ | : (4.14)
With W, 23[l] can be I;elated to A%(1] by |
AA[WI) = A%e[l], AS[1] = Ad[W 1] (4.15)

From (4.12), (4.13), and the fact that d, and d, are coprime, one can verify that
(4.15) is consistent with the definition in (4.10). o ‘
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=(Ti, 1)T" d= ( 1 1) — (11)T d=ﬁ(2.i,1)Tm.

Figure 4.4: flg(em) in (4.18) using the sinc wavelet. Each plot represents the 2-D
discrete-space frequency —m < Q, < 7 from left to right, and —7 < 2, < 7 from
bottom to top. Light gray and dark gray represent 1 and —1 respectively.

From (4.10) and (4.11), iAz‘;‘? [1] ;5[175] . ﬁp[ly], and it is s_traightfdrward'that‘
CHPE) = Ap(e™). (4.16)

Moreovei from (4'.14) (415) and (4.16),

M= z e = YRR W @ar)
. lez? ' Vez? :
_ Z A% e —iQTWI _ Hdo( JWTS2y =vI;[p(ede”).

o 1I=Wlrez?

- As an example, using the sinc wavelet introduced in Sec. 4.1.3,

N I 4Q,,Q,) i .

Hg(e’n) - { ) qd( y) TS even (a18)
-1, ¢ (Qz,.Qy) is odd, - .

™ = A, B w19

- where ¢%(9,, Q) = [(d:Q2 +dyQy + Z)/7] and | | denotes the floor functlon Plots
of H3(e7®?) for the Stage-1 directions included in the 9 modes of the DA-DWT are
~shown in Fig. 4.4. _ | | |
In the folloWing derivation, we establish‘the relationship between the frequency
respohse' of the filter in (4.8a), H3(e’St), with the equivalent filter in the upsampled
domain in (4.10), flg(ejﬂ), From (4.8) and (4.10), convolving ’hf,[l]'with so[l] is

equivalent to convolving A%[l] with $[l] followed by a 1-pixel vertical advance and



CHAPTER 4. DA-DWT | | | : 92

- vertical downsampling, i.e.,

(1% % so)l] = (% * So) {1, 20y + 1], B (4.20)
Hence,
- - . .&k ’Q". N
HA (7). Sy( e’n ) =3 ZHI‘% /% e 5 ER ™) . gf 7 R So_(e’Q’,e’( 2 thm)y, (4.21)
: k=0 ; o

From (4.9),
.5’0(_ejn) = So(ejfz’ , e/ *W), _ (4.22)

In addition, from the fact that d is always an odd ‘i‘nteger and (4.10), A3[] -

A3l 1] = 0 if I, is even. Since e~ = (—1)W if k is an odd integer,

HP e]ﬂ Z Z hP lz,ly]e‘JQ zlz _Jnyly . _e:jkwly)

lyeZleZ

= —HE(e%, JWH)) vk ks odd. (4.23)

Combining (4.21), (4.2’2) and (4.23), we obtain

194 ! ‘ 91 : & k & A~ dr . &
HEAE %Z 72 A3 (1%, &2 M) = 02 A (e 12), (4.24)
k=0 ‘ | :
‘Finally, combining (4.17) and (4.24), we obtain
PR T 'w9+dﬁ) o
Hy(e™) = &2 Hp(el'%" =" 27). (4.25) .

* With a similar derivation, the frequency response of the filter in (4.8b), Hg(e’?), can

" be obtained as

L
)

. 2 |
HY(&) = 7773 Hy(d =%+ 42)), (4.26)
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where ﬁu(ejﬂi) is the frequency response of the prototype 1-D update filter.

4.3.2 Coefficient Power Spectral Density

Assume sl] is a stationary 2-D discrete-space r.an_domﬁeld. Denote the 2-D discrete-
space autocorrelation function of s[l] by Rss[Al] = E{s[1+Al]s*[1]} where s*[1] denotes
~ the complex conjugate of s[l], and s[l] is real so that s*[I] = s[l]. The 2-D discrete-
space PSD of s[l] is denoted by ®,,(e’?) (wvith the shorthand notation ®,,). Since

so[l] and s,[l] are vertical subsamples of s[l] with different phases,

Rypso[Al] = Ryyo, [Al] = Res[Al, 241, o (a20)
Ry, [Al] = Ry[Al;, 2AL, — 1] (4.28)
Thérefore,
'. S 2y | .
<I>3030(ejﬂ) =d,, (cm) = %Z @Ss(ejnz, eJ(.T+k7r))’ | (4.29)
k=0

. ' ! Sy ) L Qy Lo

Dope (€)= 3 ) (—1)Fe 72 By (7%, 72 1), (4.30)
k=0 . v . . .

From (4.8), (4.25), (4.26), and the property that @ss(ejn) is real, the PSD of the

high-pass and the low-pass subbands when wavelet filtering is applied along direction

d, denoted by ® ,, and ®F . respectively, can be expressed as

®Y oy = gt (LH|HP )P ogso — 2H5Paqs,), 7 ' (4.31)
(I)zl)owo = g% . ('(|1—H;}H;_3|2 + |Hg|2)(1>3030 +2(1 - HgHg)Hg*(DSOSI)' (4-32)

Note that Hid, o, HEHE, and H3*®,,,, are all real.

4.3.3 - Transform Coding Gain

The derivation in Sec. 4.3.1 and Sec. 4.3.2 brelate.s the PSD of the two subbands re-
sulting from Stage 1 of the DA-DWT to the PSD of the source image pixels. It is
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- Flgure 4.5: Transform codlng gain 1mprovement from 3 levels of the DA-DWT upon
the conventional 2-D DWT using (a) the 5/3 filter pair, and (b) the sinc wavelet.
The source PSD is generated assuming elliptic random fields- with A, = — In(0.8) fs,
= Ay/ky Where ky = 2, 4 8,16,32, and 6 from 0° to 90°. A darker line corresponds
to a larger k:b, ie., stronger directionality. o

: straightforward". toextend the deri\?ation to Stage 2 of the ‘DA-DWT as well as multi- |
ple levels of the transform so that the PSD of any subband can be derived recursi{fely
from the source PSD, given the selected mode in each level and the underlying wavelet
" kernel. The variance in the subband can then be computed by averaging the corre-
sponding PSD over —m < Q, < 7 and —7 < Q< numerlcally, and the calculatlon
of the transform coding gain defined in Sec. 3.4.1 follows. § _

The transform coding gain improvement from the DA-DWT upon the conventional
- 2-DDWT in decibel (dB), i.e.; 10-logyg M is plotted in Fig. 4.5 assuming the -

"source is the Gaussian e111pt1c random ﬁeld descrlbed in Sec. 2.3.1, using both the 5/3

filter pair and the sinc wavelet. Note that although the formulation in (2. 21) is only ’
. applicable to orthonormal transforms it can be extended to biorthogonal transforms
such as the 5/ 3 filter pair, by considering the energy expansion factors in wavelet
‘synthesis [185]. .Nevertheless, this additional consideration can be excluded in our
calculation since we are only interested in the eoding gain ’ratio betWeen two trans-
forms adopting the same Wavelet kernel, hence sharing the same energy. expansion

factors. We assume three levels of the transforms are applied to the source, and
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the DA-DWT always selects the mode with the highest transform coding gain. In
Fig. 4.5, we consider only the elliptic random fields oriented from 0° to 90° due to
" the symmetry between Mode 1-4 and Mode 5-8 of the DA-DWT (Fig. 4.1-(a)).

In Fig. 4.5, as expected, the DA-DWT leads to a 1a,rgerkimproveméntv for sources
with stronger directionality. The peaké around 30° and 45° in Fig. 4.5-(a) come from
Mode 2 and Mode 3'respéctively, and the peak at 63° and its symmetric counterpart
around 27° are contributed by Mode 4 and Mode 1 respectively. For further illustra-
tion, the PSD of two examples of the elliptic random fields are shown in‘Fig. 4.6. In
‘Fig. 4.7, these PSDs ’é,re filtered by the 2-D analysis filters of one level of the DA-DWT
~ using the 5/3 filter pair, whose frequency responses are shown in Fig. 4.2-(a). The
intensity in the plots of the filtered PSD diréétly indicates the enérgy contained in
each subband. For the exainple in Fig. 4.6-(a) and Fig. 4.7-(a), >most energy is cap-
tured in the LL subband in Mode 3. Therefore, Mode 3 is selected as it gives the
best energy concentration and hence the highest transform coding gain. Similarly,
" Mode 4 is selected in Fig. 4.7-(b) for the example in Fig. 4.6-(b). Note that the
aliasing components in Fig. 4.6-(b) due to undersampiing of sharp image textures are
éligned with the passband of the LL subband in Mode 4 as shown in Fig. 4.2. Hence,
compared to other modes, in Mode 4 even the energy in the aliasing components is
concentrated in the LL subband, resulting in a higher transform coding gain. |
- Comparing Fig. 4.5-(a) and Fig. 4.5-(b), a larger improvement is observed when
the 5/3 filter pair is adopted due to the overlapping subbands. In the cpnventiéna,l
transform (Mode 0) using the 5/3 filter pair, the source energy residing in the over-
lapping regions is leaked into multiple subbands, hampering energy concentration.
With a properly selected directional mode, most energy is contained in the interior of
one subband, further away from the overlapping regions. This significantly reduces
the energy leakage problem and thus further improves energy concentration. Using
the sinc wavelet, the subbands do not overlap and therefore the directional modes do

not benefit from this improvement.
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(a) Aa = —In(0.8) fs, As = Aa/8, § =45° (b) Ay = —In(0.8)f,, Xy = Aa/32, 0 = 63°
Figure 4.6: The PSD of two examples of the elliptic random field in logarithmic scale.

(b) Mode 4 selected

Figure 4.7: The PSD examples in Fig. 4.6 filtered by the 2-D analysis filters of the 9
DA-DWT modes using the 5/3 filter pair. Mode 3 and Mode 4 are selected for (a)
and (b) respectively as they lead to the highest transform coding gain.

4.3.4 Rate-Distortion Performance

Extending the analysis in Sec. 2.3.2 that models the image-wise rate-distortion per-
formance of the 8 x 8 KLT and the 8 x 8 DCT using the proposed statistical image

model, in this section we derive the model performance of the DA-DWT. We assume
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Figure 4.8: Model rate-distortion performance of the DA-DWT and the conventional
2-D DWT using the sinc wavelet and the 5/3 filter pair.

three levels of the DA-DWT are applied to the image, followed by an additional level
of the conventional 2-D DWT to further decompose the resulting low-pass subband,
same as in the actual experiments to be discussed in Sec. 4.4.

As explained in Sec. 2.3.2 and in the beginning of Sec. 4.3.3, for every mode of
the DA-PWT, the model subband variances around a block can be derived from
the image model. Locally around a block, we assume that every subband is coded
independently from others, and the coding performance is ideal in the sense that it
achieves the rate-distortion function of Gaussian memoryless sources. As a result,

the local rate-distortion performance around the b-th block in the image using mode
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~ m can be expressed as

Sl . | 2(m)

- (m) 1 To,5 - . : '
B gnsmax{o w5 h - (433)

-S> min{'x of:é’"’},
5=0

where S denotes the number of subbands and § = 13 for the 4—level transform Uf ém)

denotes the variance of subband s around the‘b—th block using mode m, 7, denotes

“the ratio between the number of coefficients in subband & and the total number of
coefficients, and A controls the rate—dlstortlon trade-off For this block, the mode of
- the DA-DWT is selected by minimizing D™ (A)+2In2- AR{™ () as for the DA-PBT
‘ ‘,explamed in Sec. 3. 4.3. Denote the mode selected for the b-th block by- ™ and the

umber of blocks in the image by Lp, the image-wise performance is then

LBl LBl

'L Z RIM™(N); D( Z DY), (434
B b=0 . . ) -

plotted in Fig. 4.8 for the images shown in Fig. 2.1 uSing both the 5/3 filter pair and
- the sinc wavelet. The model performance of 4 levels of the conventional 2-D DWT,
which can also be expressed by (4.34) with mp = 0 for every block, is included for
reference. ‘ ‘ E o . . ‘
For the 5 /3 filter pair, at the same rate the DA-DWT outperforms the 2-D DWT
by up to around 4 dB for Spoke, 1dB for Monarch, 1.2dB for Pentagon and 0.7dB
for Lena. Clearly, the DA-DWT delivers more improvements over the 2-D DWT
- for images containing more directional textures. The model, performance gain closely
follows the actual gain obtained by experiments, and this will be discussed in Sec. 4.4.
- In Fig. 4.8, for the sinc wavelet that requires an infinite support, the improvement by
- the DA-DWT over the 2-D DWT is less than that for the 5/3 filter pair, consistent
with the transform coding gain analysis in Sec. 4.3.3. For Spoke and Pentagon, the
performance of the DA-DWT using the 5/3 filter pair matches that of the 2-D DWT

using the sinc wavelet. This suggests that instead of using a complicated kernel
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@ i
Figure 4.9: 512 x 512 8-bit grayscale image (a) Barbara and (b) Mandrill

‘that may require more computation, varying the filtering direction of a simple kernel

accordihg to the image content can be a better alternative.

4.4 Experimehtal‘ Results

In the experimental results reported inhthi/s section, in addition to the test images
shown in Fig. 2.1, we further include the two images in Fig. 4.9. Threelevels of the
DA-DWT are first applied to the image, followed by one additional level of the con-
" ventional 2-D DWT to further decompose the resulting low-pass subband. The three
levels of the DA-DWT share the same set of direction selections, and the macroblock-
size is set to 64 x 64 pixels as discussed in Sec. 4.2.1. The 5/3 filter pair is adopted for -
its simplicity and, also for providing a direct comparison with the model performance
in Fig. 4.8. The DA-DWT can also be applied with other wavelet kernels such as the
(6, 6) interpolating wa'veletfand‘the 9/7 filter pair as described in [26, 53,129).
- The compression perfo'fmance of the DA-DWT for the test images is shown in
Fig. 4.10. In addition, the performance of four'levels of the conventional 2-D DWT,
equivalent to always selecting Mo‘de 0 in the DA-DWT, is also shown for comparison.
For both transforms, the coefficients are encoded by the TCE embedded bitplane
coder proposed in [186] as described in Sec. 4.2.2. The wavelet transforms, together
with bitplane coding, provide an embedded image representation such that different
decoding qualities are obtained by truncating the single bitstream from the encoder

at different rates. To choose the Lagrangian multiplier X for direction selection,
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Figure 4.10: Rate-distortion performance of the DA-DWT and the conventional 2-D
DWT using the 5/3 filter pair.
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we always use Qu.ass = 34, equivalent to a target quantizatien stepsize of 32 as

_explalned in Sec. 4.2.2. The decoding rate and distortion obtained by decodmg the
embedded bitstream up to the bitplane correspondmg to this quantization stepsize is
indicated by the circular marker on each DA-DWT. curve in Fig. 4.10, usually taking
place around 30 to 32dB and below 0.4 bpp where the 1mprovement in visual quality
using the DA-DWT is most prominent as we shall demonstrate in Fig. 4.11, Flg 4:12
and Fig. 4.13. The resulting signaling overhead ranges from 0.005 bpp (Monarch) to
0.01 bpp (Mandrill), and this rate is included in the rate calculation in Fig. 4.10. :

Cbomparing» the model performance in Fig. 4.8 with the actual performance in
Fig. 4.10, at the same rate the model reconstruction quality is typically h1gher than
the actual one by 2 to 4dB. This is mainly due to the assumptions in the analys1s in
Sec. 4.3.4 that local statistics of the subband coefficients are known and the perfor-
mance of coefﬁcient‘Codirlg is ideal. Although the practical TCE bitplane coder we |
adopted exploits the correlation across subbands to eome extent [186], an advantage
over the 1ndependent coding assumption also 1ncluded in the analy31s its performance
can still be far from the analytical coding scheme In partlcular the performance dif-
ference is most s1gn1ﬁcant for Spoke, with an average around 4dB, due to the highly
varying local statistics between the foreground spoke and the background that are
difficult to estimate for the adopted practical coder. Nevertheless, the main purpose
of the analysis is to quantify the performance gain from the DA-DWT over the 2-D -
DWT in a general transform coding framework and the actual gain, i.e., the gap

between the two curves in Fig. 4.10, is indeed closely captured by the analysis.

As discussed in Sec. 1.2, the non-adaptive directional transforms in the literature
such as the steerable pyramid [75,174], the complex wavelet transform [70,114], the
ridgelet transform [17,61], the curvelet transform [65,178] and the contourlet trans-
form [62] have shown certain improvement over the non-directional 2-D DWT in terms
of nonlinear approximation performance. However, none has reported rate-distortion
coding improvement for typical test images. Unlike the .non—adaptive directional
transforms, from Fig. 4.10, the DA-DWT outperforms the 2—D DWT by up to 5.1dB
at the same rate for Spoke, 1.4dB for Monarch, 1.2dB for Pentagon, 1.0dB for Lena,
2.1 dB‘ for Barbara and 0.6 dB for Mandrill. In addition to the natural images in the
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t>est set, significant gain of more than 2 dB is also observed for fingerprint images, as
‘well as medical images where sharp edges occur at the bdundary between the object
of interest and the background.. In general, the performance gain is larger for images
rich of features with large intensity transition in one direction and small variation
in the orthogonal direction, again consistent with the tr‘a,nsform coding gain analysis
presented in Sec. 4.3.3. |
For each test image, two 128 x 128 regions reconstructed at 0.05, 0.1, 0.2, 0.3,
0.4 and 0.5bpp are included in Fig. 4.11, Fig. 412 and F ig. 4.13 to demonstrate the
difference in visual quality between the DA-DWT and the 2-D DWT. In general, at
lower rates the réconstruction from the DA-DWT exhibits brushstroke-like artifacts
along image features. Different from the typical checkerboard artifacts resulting from
the conventional transform, for instancé as in the reconstructed Spoke and Monarch
in Fig. 4.11, the brushstroke artifacts follow the geometric flow in the ifnage, best
observed at the stripes in Barbara and the hair in Mandrill in Fig. 4.13, and there-
fore better rpreser\vfe the geometric structure. Hence, at low rates the DA-DWT can
readﬂy delineate the image content, making it a superior candidate for progressive
transmission of images, ‘where a low-quality preview is first reconstructed and, as

- more data are received, refined to achieve higher qualities.

4.5 Summary

We have proposed a new direction-adaptive discrete wavelet transform (DA-DWT)
for image coding. The DA-DWT provides an efﬁéient representation for directional
~image features such as edges and lines. Using a lifting structure, the DA-DWT is
able to locally adapt the transform directions to the image content while ensuring
the reversibility of the transform. In our experiments, the DA-DWT outperforms
the conventional 2-D DWT by around 1 to 2dB in PSNR for typical test images,
and by up to 5.1dB for special classes of images, consistent with the performance
improvement derived from theoretical analysis using an image model.

Although the transform directions are selected on a block-by-block basis, filtering
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extends across block boundaries so that blocking artifacts are absent in the reconstruc-

tion. At low rates, the reconstruction error of the DA-DWT exhibits brushstroke-like =

artifacts. Different from the ringing and checkefboard artifacts typically observed in
the conve‘ntional fransform, the bfushstroke artifacts better preserve the geometric
structure in the image. The ability to better depict the imagé content at low ratés,
together with embedded coding of the coefficients, makes the DA-DWT espec1ally

suitable for progresswe transmission of images.
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Figure 4.11: Each group of 12 plots corresponds to a 128 x 128 region in Spoke and
Monarch. In each group, the reconstructions from the conventional 2-D DWT and
the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row
~ respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5bpp from left to right.
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Figure 4.12: Each group of 12 plots corresponds to a 128 x 1
and Lena. In each group, the reconstructions from the conventional 2-D DWT and
the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row
respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 bpp from left to right.
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Figure 4.13: Each group of 12 plots corresponds to a 128 x 128 region in Barbara
.and Mandrill. In each group, the reconstructions from the conventional 2-D DWT
and the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row
respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 bpp from left to right.



Chapter 5
Cﬂndusians

In this dissertatioh, two new direction—adéptive, ‘tr‘ansforms are proposed to improve
the compression efficiency of practical image coding systems: the direction-adaptive
partitioned block transform (DA-PBT) and the direction-adaptive discrete Wavelet
transform (DA-DWT), together with a novel image model that facilitates theoretical
analySis of the coding performance. ‘The _diréctioﬁ-adaptive transforms adapt ‘the
selection of basis functions according to local directionality in images to efficiently
- represent directional image features such as edges and lines. Both new transforms are .
shown to be superior candidates for image coding to their non-adaptive coﬁnterparts.
The image model represents an image by a mixture of texture sources to cope
with locally varying statiétics.‘ Each texture source is a 2-D stationary random field
composed of an irregular and a regular texture component, characterized by the ellip-
tic random ﬁéld‘ and the periodic-wave random field respectively. Usihg the texture
sources, any image neighborhood centered in a particular image block is modeled
as a segment of a realization of the texture source associated with the ‘block, mixed
with additive white noise and normalized by the local variance and the local mean’
afound the block. For a given image,. an iterative clustering algorithm is proposed
to optimize the parameters of the texture soufces, the association between the image
‘blocks and the texture sources, and the white-noise level in each block. Using the

model, theoretical analysis shows that using an adaptiVe transform consisting of the

107
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KLTs derived from the texture sources instead of a fixed transform offers more im-
;;rovement in terms of transform coding gair}for textures with stronger directienality.
: The analysis also indicates that a substantial gain in rate-distortion performance can
be expected around sharp directional features, rendered by the directional bases of
the adaptive transform aligned with the image features. - ' ‘

To prov‘ide'directional bases for a practical transform, the DA-PBT is proposed for
coding. of images and video sequences. The DA-PBT outperforms the coriventional
2-D DCT by more than 2dB in PSNR for images with pronounced directioﬁal fea-
tures. Since it avoids the typical ringing and checkerboard artifacts of the 2-D DCT,
subjective improvements are even larger than iﬁd-icated by the rate-distortion perfor-
mance. The DA-PBT also outperforms a previously proposed directional DCT while
vdeménding less computation, owing to an improved directional seleetivity, direction-
adaptive partitioning and better coeflicient orderlng for entropy coding. To exploit
the frequency response of the human visual system quantization matrices can be used
with the DA-PBT.. We show a stralghtforward way to transform JPEG quantlzatlon
matrlces into the d1rect10nal transform space, thus avoiding cumbersome subJectlve '
tests. The DA-PBT can also be combined with predictive coding, either directional
- prediction within the image, where the direction selection for the prediction and the
transform can be elegantly combined, or interframe prediction for video. It is not
surprising that the gains of both techniques are not additive, as similar signal prop-
erties are exploited by the prediction and the transform. Nevertheless, performance
improvements are still observed. : ‘

For the DA-PBT, one of the advantages of being a block transform is that it
can be conveniently combined with block-based predictive coding widelyb adopted in
image and video coding standards. However, the block-wise operation is incapable ‘-
~ of exploiting the correlation across block boundaries, and additionally, at low rates,
results in blocking artifacts in the reconstruction. The DA-DWT proposed for trans-
form coding of still images does not have these drawbacks. Using the lifting structure,
the DA-DWT is able to locally adapt the transform directions to the‘image content
while ensuring the reversibility of the transform. Although the transform directions

are selected on a block-by-block basis, filtering extends across block boundaries so



CHAPTER 5. CONCLUSIONS | 109

that inter-block correlation is exploited and blocking artifacts are absent in the re-
construction. In our expefiments, the DA-DWT outperforms the conventional 2-D
DWT by around 1 to 2dB for typical test images, and by up to 5.1dB for spe-
cial classes of images, consistent with the performance improvement derived from
" theoretical analysis using the image model. At low rates, the reconstruction error
of the DA-DWT exhibits brushstroke-like artifacts. Different from the riﬁging and
checkerboard artifacts typically observed in the convenfional transform, the brush-
stroke artifacts better preserve the geometric structure in‘tvhe image. The ability to
better depict the image content at low rates, together with embedded Coding of the
coefficients, makes the DA-DWT especially suitable for progressive transmission of

images.
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