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Abstract 

This dissertation investigates direction-adaptive transforms that adapt transform di­

rections to local directionality in images in order to improve the performance of image 

coding. Two new direction-adaptive transforms are proposed: the direction-adaptive 

partitioned block transform (DA-PBT) and the direction-adaptive discrete wavelet 

transform (DA-DWT), together with a novel image model that facilitates theoretical 

analysis of the coding performance. 

The image model is able to represent locally varying textures in the image, hence 

suitable for the analysis of adaptive transforms. Using the model, theoretical analysis 

shows that significant improvements can be expected around sharp directional fea­

tures such as edges and lines, rendered by directional bases of the adaptive transform. 

To provide these directional bases in practice, the DA-PBT is proposed based on 

the DCT for coding of image and video sequences. It outperforms the conventional 

2-D DCT in rate-distortion performance as well as visual quality. It can also be 

combined with block-based predictive coding, both directional prediction within the 

image or interframe prediction for video to further improve the compression efficiency. 

For coding of still images, the DA-DWT is proposed based on the DWT. Although 

the directions are selected block-wise, using the lifting structure, filtering extends 

across block boundaries such that, unlike the DA-PBT, inter-block correlation can 

be exploited and blocking artifacts are absent in the reconstruction. At low rates, 

different from the ringing and checkerboard artifacts of the conventional transforms, 

the DA-DWT results in brushstroke-like artifacts that better preserve the geometric 

structure in the image, providing a visually more pleasing image representation. 
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Chapter 1 

Introduction 

The quest for efficient image coding is an on-going research effort of both theoretical 

and practical interest. Among image coding techniques, transform coding is recog­

nized as one of the most successful methods, playing a crucial role in almost all of 

the state-of-the-art image and video coding standards. This success in modern appli­

cations is in fact built upon decades of studies. In this chapter, we first review early 

developments of transform coding of images in Sec. 1.1, and in particular examine 

two transforms widely adopted in practice: the discrete cosine transform (DCT) and 

the discrete wavelet transform (DWT). In two dimensions, the DCT and the DWT 

are not able to efficiently represent directional image features not aligned vertically 

or horizontally, due to the lack of directional bases in such orientations. In Sec. 1.2, 

we review works on directional transforms that provide these directional bases. The 

directional transforms are very effective in image processing tasks, however, their 

performance for image coding is rather unsatisfactory. Another group of transforms 

that adapt the choice of directional bases according to local directionality in images 

is presented in Sec. 1.3. These direction-adaptive transforms can achieve substan­

tial improvement in coding performance, both objectively and subjectively, over the 

conventional non-directional transforms, and they constitute the main theme of this 

dissertation. A summary of the research contributions in the dissertation is provided 

in Sec. 1.4, and the organization of the remaining chapters is described in Sec. 1.5. 
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CHAPTER 1. INTRODUCTION 2 

1.1 Transform Coding of Images 

A general framework of transform coding consists of three steps: an invertible linear 

transformation that converts a vector of source samples into a vector of coefficients, in­

dependent quantization optimized for each scalar coefficient, and entropy coding that 

maps the quantization indices into a bitstream. To reconstruct the source samples, 

the bitstream is first decoded losslessly to obtain the quantization indices, followed 

by inverse quantization that recovers the coefficients, possibly with loss in fidelity, 

and finally the inverse transform. This framework divides the challenging task of 

designing optimal codes for the source into a sequence of three simpler steps. By 

first exploiting the correlation among the source samples with the linear transform, 

scalar quantization and simple entropy coding may be applied.to the decorrelated 

coefficients without significant loss in coding performance [88]. 

Among all linear transforms with the same dimension, the Karhunen Loeve Trans­

form (KLT) generates uncorrelated coefficients for a given source and achieves max­

imum energy compaction by packing the most energy in any given number of coeffi­

cients. To be specific, if in the inverse transform only a given number of coefficients 

with the largest magnitude are kept and the remaining are set to zero, the KLT is 

the transform with the minimum mean-squared-error (MSE) distortion in the recon­

struction [14,106]. Furthermore, for source coding, assuming jointly Gaussian source 

samples and independent quantization and entropy coding of each scalar coefficient 

at high rates, the KLT achieves the minimum MSE distortion in the reconstruction 

among all orthogonal transforms at the same rate [88,106]. 

Exploiting the energy compaction property of the KLT, Kramer and Mathews 

[117] first developed a system for the transmission of highly-correlated continuous-

time speech signals. Instead of sending the whole set of signals, only a few linear 

combinations of the signals computed based on the KLT are transmitted, achieving 

bandwidth reduction with a prescribed fidelity. For discrete-time signals, Huang and 

Schultheiss [100,101] first proposed the aforementioned transform coding framework, 

analyzed the performance assuming jointly Gaussian source samples and fixed-rate 

scalar quantization, and concluded that the KLT is optimal for the task. Despite its 
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theoretical optimality, in practice the KLT of a given source is generally difficult to 

compute and implement. 

For practical coding systems, several transforms designed to approximate the per­

formance of the KLT with efficient implementation have been proposed. For instance, 

the Hadamard transform was proposed for coding of speech signals [45,86]. Transform 

coding of images was first proposed by Andrews and Pratt [6] using fast implemen­

tation of the discrete Fourier transform (DFT) [41,43], applied to the entire image in 

a separable fashion, i.e., applying 1-D transforms vertically along columns of image 

samples followed by further processing of the resulting coefficients with horizontal 1-D 

transforms along rows of the coefficients. The authors later adopted the Hadamard 

transform [7,156], again applied as a separable transform to 2-D images. Instead 

of transforming the entire image, transform coding can be applied to image blocks, 

lowering the complexity of the transform and allowing more flexibility in quantization 

and entropy coding. For example, the method presented in [5] applies the DFT to 

image blocks composed of 16 x 16 samples and adaptively selects quantization accu­

racies for different types of blocks. The performance of three block transforms, the 

KLT, the DFT and the Hadamard transform, is analyzed and compared in [98]. The 

Slant transform was introduced in [69] and was later extended to use a fast construc­

tion [155], demonstrating improved performance over the DFT and the Hadamard 

transform. Detailed reviews of early developments of transform image coding can be 

found in [37,105,143,208]. 

1.1.1 Discrete Cosine Transform 

Since its introduction in [2], the DCT has become the main focus of transform coding 

of image blocks for its ability to better approximate the KLT for smooth regions in 

images than the previously proposed block transforms, observed both from experi­

ments [160] and via theoretical justification [38,99]. For image blocks, the DCT is 

applied as a separable 2-D transform, possibly with fast implementation [34,120]. 

The 64 basis functions of the 8 x 8 DCT are shown in Fig. l.l-(a). Each basis func­

tion is associated with a DCT coefficient, representing an image block as a linear 
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'1* 

„". . ! 

" (b)' 

Figure 1.1: (a) Basis functions of the 8 x 8 DCT, (b) basis functions of one level of 
the separable 2-D DWT (forward transform) using the 9/7 filter pair. 

combination of the bases. The DCT is adopted as the core of the JPEG image coding 

standard, which was initiated in 1986 and issued in 1992 [109,150,198,199]. 

The DCT is also widely adopted in the hybrid coding framework for images and 

image sequences. In hybrid coding of images [97], block transforms are first ap­

plied to the image and the transform coefficients are encoded with DPCM, i.e., using 

prediction generated from the reconstruction of the corresponding coefficients in pre­

viously encoded blocks. For image sequences, the prediction signal can be derived 

from perviously encoded images in the sequence to further exploit the temporal cor­

relation [165]. In [107], motion-compensated interframe prediction is incorporated 

into the DPCM step of hybrid coding to better explore the temporal redundancy. 

The authors have also suggested an alternative structure of hybrid coding that first 

performs the DPCM step, i.e., motion-compensated prediction, followed by transform 

coding of the prediction residual. This structure has become the common framework 

for most video coding standards, for instance, H.263 [162], H.263+ [78], and most 

recently H.264 [206], all using the DCT or its simplified variant. 

Despite its ability to decorrelate samples in image blocks, as a block transform, 

the DCT cannot exploit the correlation across block boundaries. Additionally, at 

lower rates, independent processing of image blocks creates blocking artifacts that 

can only be partially mitigated with post-processing algorithms [172], substantially 

(a) 
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deteriorating visual quality. To overcome these limitations, based on the DCT, Malvar 

and Staelin proposed the lapped transform [136-139] that operates on overlapped 

blocks while overall remaining a critically sampled transform, i.e., generating the 

same number of coefficients as the number of samples in the image. The work in 

[187] further shows that a large family of the lapped transforms can be constructed 

by adding simple pre-processing and post-processing components to the DCT-based 

framework with disjoint blocks. This approach is adopted in HD Photo [176], a 

recently developed image coding system for applications in digital photography. 

1.1.2 Discrete Wavelet Transform 

Another image coding technique free from blocking artifacts is subband coding [195, 

197,203,209], also conforming with the transform coding framework. In subband 

coding, the transform is implemented through a set of filtering and subsampling 

procedures applied to the entire image. The set of filters is designed to have approx­

imately non-overlapping frequency responses, hence decomposing the source samples 

into uncorrelated frequency components, and subsampling enables a critically sam­

pled transform. In this regard, block transforms such as the DCT can be considered 

as a special class of subband transforms, with the support of the filters, i.e., the bases, 

limited within a block. For general subband transforms, the filters are constructed 

with certain constraints such that the source samples can be perfectly reconstructed 

from the coefficients by another set of upsampling and filtering operations, where the 

set of filters used in the forward and the inverse transform may be different, leading 

to a biorthogonal transform [188]. 

The discrete wavelet transform (DWT) [8, 9,124,135] is also a special case of 

subband transforms. The filters used in the DWT are typically designed based on 

certain smoothness constraints [42,46,134]. The DWT decomposes the source into 

a low-pass (L) and a high-pass (H) subband. In two dimensions, the separable 2-D 

DWT leads to four subbands, LL, LH, EL andHH, in one level of the 2-D transform. 

The basis functions of the separable 2-D DWT using the popular 9/7 filter pair [42,47] 

are shown in Fig. l.l-(b). They correspond to the subband filters resulting in the 
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four subbands in the forward transform. The decomposition can be continued by 

recursively applying the process to the subsampled low-resolution image, i.e., the LL 

subband, providing a critically sampled yet multi-resolution representation. 

To encode wavelet coefficients, Shapiro proposed the EZW algorithm [171] that 

exploits the remaining correlation across resolutions, and reported rate-distortion re­

sults outperforming than the JPEG standard. More importantly, EZW generates an 

embedded bitstream, i.e., different qualities of the reconstruction can be obtained 

by truncating the bitstream at different lengths. The performance of embedded en­

tropy coding have been further improved in, for instance, [166] and [183]. In [179], 

Sweldens showed that the DWT can be implemented using the lifting structure. By 

factoring the DWT into pairs of lifting steps, the lifting structure enables an effi­

cient construction of the DWT and facilitates the design of a new variety of wavelet 

filters [16,47]. 

Because of the absence of blocking artifacts, multi-resolution representation and 

superior compression performance, the separable 2-D DWT has been adopted in the 

JPEG2000 image coding standard defined in 2000 [110], which not only outperforms 

JPEG in compression performance but also provides more functionalities [36,175,185]. 

As a side remark, the performance of DCT-based image coding has been greatly 

improved after the introduction of the JPEG standard. For example, an extension 

of H.264 using the hybrid coding principle for still images [141] and other schemes 

using the lapped transform with more efficient embedded entropy coding [170,176] 

have shown performance comparable to JPEG2000 [48]. 

1.2 Directional Transforms 

Due to the separable structure that constructs a 2-D transform by cascading a 1-D 

vertical transform with a 1-D horizontal transform, the basis functions of the 2-D 

DCT and the separable 2-D DWT consist of vertical, horizontal, and checkerboard 

patterns, as shown in Fig. 1.1. Because images are represented as linear combinations 

of these bases, the lack of bases aligned with other oblique directions hinders an 

efficient representation of directional image features, e.g., edges and lines, in such 
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orientations. 

It is well recognized that the receptive fields of simple cells in mammalian visual 

cortex are band-pass and oriented [49,102,103,149]. A more recent study [146] that 

evaluated sparse representations of natural images led to basis images closely match­

ing the characteristics of the visual cells, supporting the hypothesis that the human 

visual system has been tuned to extract essential information in a natural scene with 

only a small number of active visual cells. These results also suggest that an efficient 

transform for image coding should provide a directional representation. To this end, 

several directional transforms that consist of directional bases other than the vertical 

and horizontal direction have been proposed in the literature. 

1.2.1 Steerable Pyramid 

One of the earlier works is the steerable pyramid [75]. It is an overcomplete transform 

with a redundancy factor of 5 | , i.e., generating 5 | times as many coefficients as the 

image samples. The overcomplete representation contains bases at different resolution 

scales and aligned with four directions: 0°, 45°, 90° and 135°. An unique property 

of the steerable pyramid is that the coefficients corresponding to a basis rotated to 

an arbitrary orientation can be directly synthesized from the pyramid representation. 

This property enables image processing applications such as orientation and contour 

analysis [75], stereo matching and image enhancement [174], and orientation-invariant 

texture recognition [96]. However, because of the large amount of data expansion in 

the transform step, it is not suited for image coding. 

1.2.2 Complex Wavelet Transform 

The dual-tree complex wavelet transform (CWT) [113-116] is also an overcomplete 

representation, with a redundancy factor of 4 in two dimensions, that achieves nearly 

shift invariance and direction selectivity. A simplified version of the duel-tree CWT, 

referred to as the real oriented 2-D dual-tree transform [11], achieves only direction 

selectivity with a smaller redundancy factor of 2. Using the non-redundant DWT 

the energy in high-frequency patterns oriented at 45° and that oriented at 135° are 
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captured together in the HH subband, as suggested by the checkerboard pattern in 

the HH basis shown in Fig. l.l-(b), whereas they are contained in separate subbands 

using the CWT or the simplified real transform. The dual-tree CWT has been applied 

to image denoising, geometry estimation and displacement estimation. Again, due to 

the redundancy in the transform domain, application to image coding has not been 

investigated. The mapping-based CWT later proposed in [70-72] constructs the CWT 

by first mapping the source onto a complex function space, followed by applying the 

DWT in the complex space. By controlling the redundancy in the mapping stage, 

a critically sampled and directional CWT can be obtained. However, image coding 

performance using the resulting non-redundant transform has not been studied. 

1.2.3 Ridgelet Transform 

Candes and Donoho proposed a continuous-space image representation named ridgelets 

[17,20,63,64] that first maps a line singularity along an arbitrary orientation in the 

image into a point singularity with the Radon transform [50]. The point singularity in 

the Radon domain can then be effectively represented by the 1-D wavelet transform. 

The finite ridgelet transform (FRIT) [56,58,61] further extended the concept to work 

on discrete-space image samples by smartly combining the overcomplete finite Radon 

transform [12,142] and the 1-D DWT to produce a critically sampled transform. Nu­

merical results in [61] show that for a synthetic image containing a straight edge the 

FRIT outperforms the DWT in terms of nonlinear approximation, i.e., resulting in 

a smaller MSE in the reconstruction if only a given number of coefficients with the 

largest magnitude are kept and others set to zero in the inverse transform [134,196]. 

Specifically, for this image when less than 1% of the largest coefficients are retained, 

the MSE from the FRIT is less than half of that from the DWT. However, no actual 

image coding result is provided. 
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1.2.4 Curvelet Transform 

The curvelet transform [19] was also developed by Candes and Donoho initially in the 

continuous space. Incorporating ridgelets as a component step, the curvelet trans­

form approximately partitions the frequency space in polar coordinates both radially 

and angularly, thus achieving directional selectivity. The discrete-space implemen­

tation of the curvelet transform [65,178], an overcomplete representation, shows its 

effectiveness in image denoising. Further developments of the curvelet transform not 

using ridgelets are discussed both in the continuous space [21-23] and in the discrete 

space [18]. Nonlinear approximation performance for synthetic images containing 

smooth curves indicates that the curvelet transform is superior to DWT for this class 

of images. 

1.2.5 Contourlet Transform 

The directional filter bank proposed in [10] approximately partitions the frequency 

space into wedge-shaped directional subbands. The resulting transform is critically 

sampled and allows perfect reconstruction, both desirable properties for image coding. 

However, the low-frequency energy at the center of the frequency space is spread into 

the directional subbands, hampering energy compaction and making it less favorable 

for compression. The contourlet transform [57,59,60,62] solves this problem by first 

constructing a Laplacian pyramid [15] and applying the directional filter bank to the 

high-pass images in the pyramid, resulting in a multi-resolution and multi-direction 

representation. However, the solution at the same time generates an overcomplete 

transform with a redundancy factor of | from the Laplacian pyramid. Critically 

sampled versions of the contourlet transform have also been proposed [132,144,221]. 

The works in [132] and [144] do not include practical applications, whereas [221] 

reports better nonlinear approximation performance than the overcomplete contourlet 

and the DWT. 
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1.3 Direction-Adaptive Transforms 

In [19], it has been demonstrated theoretically that for images containing smooth 

curves a non-adaptive directional representation can approach the nonlinear approx­

imation performance of adaptive directional representations. However, in practice, 

non-adaptive directional transforms such as those discussed in Sec. 1.2 have not been 

able to produce rate-distortion image coding results that are generally better than 

non-directional transforms, e.g., the 2-D DCT and the 2-D DWT, primarily due to 

the redundant representation and lack of effective entropy coders. Direction-adaptive 

transforms turn out to be a superior alternative. A direction-adaptive transform typ­

ically consists of several modes, each mode providing directional bases dedicated to a 

certain orientation. According to the local directionality in the image, different modes 

are adaptively selected in different image regions at the encoder. Some schemes use 

forward adaptation such that the mode selections need to be signaled to the decoder 

as side information. For others using backward adaptation, these selections can be re­

covered at the decoder without any side information. As long as the transform in each 

mode is critically sampled, so is the overall adaptive transform. Additionally, a con­

ventional non-directional transform can be incorporated as a non-directional mode, 

handling regions with no conspicuous directionality. Hence, with a proper design, 

the performance of an adaptive transform should never be inferior to the constituent 

non-directional transform. 

1.3.1 Image Coding using Adaptive Transforms 

The fundamental framework of image coding using adaptive transforms was intro­

duced by Tasto and Wintz [180,181]. An image is first divided into disjoint blocks, 

and the blocks are clustered into groups, each group coded with a transform and the 

associated quantization and entropy coding scheme that are adapted to the compo­

nent blocks. Assuming a Gaussian source and given the number of groups and the 

size of each group, Tasto and Wintz presented an iterative algorithm that, at high 

rates, optimizes the clustering, the transforms and the associated rate allocation of 

the Gaussian coefficients. The rate overhead for the side information that signals 
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the mapping between the blocks and the groups, i.e., the'mode selections, is taken 

into account in the algorithm. The resulting optimal transforms are the KLTs of the 

groups, and the KLT bases are inherently directional for groups containing directional 

image features. 

Effros, Chou and Gray [66,67] generalized the framework as a code design prob­

lem for image coding systems, not constrained to Gaussian sources and the high-rate 

assumption, and additionally optimizing the size of each group. In their experiments, 

64 modes, each specifying a KLT and the associated rate allocation, are trained from 

one image and then applied to code another image using forward adaptation, demon­

strating a substantial gain over a JPEG-like non-adaptive approach. As described 

in [89-91], adaptive transforms based on the KLT can also be achieved with back­

ward adaptation. 

Despite their optimality, the KLTs generally do not have an efficient implementa­

tion. It may be more advantageous to design the modes with suboptimal transforms 

that can be easily constructed, such as the DCT and the DWT. One such example is 

the variable blocksize DCT that further divides a block into smaller partitions, which 

are square sub-blocks [33,189,190] or can be rectangular [54,55], and the DCT is sepa­

rately applied within each partition. Different partitioning structures are selected for 

different blocks based on the local image content. Each structure corresponds to one 

mode of the overall adaptive transform, and the mode selections are signaled as side 

information. A rate-distortion optimized framework was proposed in [158] to select 

the best partitioning for every block, and the framework was also applied to locally 

adapt the decomposition structures of the DWT [159]. These adaptive transforms 

are, however, not directional. 

1.3.2 DCT-based Direction-Adaptive Transforms 

The work in [76, 218, 219] and our own approach in [27, 29] construct directional 

modes in direction-adaptive transforms by first performing one set of the 1-D DCTs, 

possibly with different lengths, along a certain orientation to directionally decorrelate 

the samples in an image block, followed by another supplementary set of the 1-D DCTs 
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to exploit the remaining correlation in other directions. A similar approach [217] uses 

a DCT-like non-directional mode and directional modes constructed with separable 

transforms customized from training data. Directional modes can also be obtained by 

permuting the block samples such that the permuted directional features are aligned 

either vertically or horizontally before applying a non-directional DCT-like transform 

[163]. Moreover, the lifting structure may be used for fast implementation of the DCT 

[126]. Using lifting, directional modes based on the DCT can be constructed, with 

directional bases extending across block boundaries [214], resulting in an adaptive 

transform that is no longer a block transform. The same technique can also be 

adopted to implement direction-adaptive lapped transforms [215]. All these adaptive 

transforms use forward adaptation. 

1.3.3 DWT-based Direction-Adaptive Transforms 

An early work of DWT-based direction-adaptive transforms is presented in [184]. 

An image is divided into blocks. Each block is then sheared through a reversible 

resampling filter such that directional features in the sheared block are oriented either 

vertically or horizontally. The 2-D DWT is applied to the sheared block and thus 

in effect provides directional bases via forward adaptation. The more recent work 

of the directionlets [191-194] constructs its directional modes by adapting both the 

wavelet filtering direction and the subsampling grid to the directionality in image 

blocks without resampling. The two approaches, among others [151,200], share the 

same limitation, i.e., independent processing of image blocks that fails to exploit the 

correlation across block boundaries and produces blocking artifacts. 

The bandelets representation [153,154] does not have this limitation. The 2-D 

DWT is first applied to the image, followed by a bandeletization procedure that fur­

ther removes the directional correlation in the LH, HL, and HH subbands using 

forward adaptation. The LL subband remains the same as in the 2-D DWT. Block­

ing artifacts are not observed since the block-wise operations in the bandeletization 

procedure are performed in the wavelet domain. However, because the procedure is 

essentially post-processing of the wavelet coefficients, the energy already contained in 
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the high-pass subbands can not be moved back to the low-pass subband, limiting its 

energy compaction ability. 

The lifting structure enables locally adaptive wavelet niters together with a regular 

subsampling grid [179]. Using the lifting structure, several DWT-based approaches 

have been developed to locally adapt the filter coefficients [13,39,40,79], or the filtering 

directions [13,80,182], such that filtering is not performed across edges in images. 

These approaches use backward adaptation that eliminates the need for signaling 

the filter selections, i.e., the mode selections, to the decoder by assuming lossless 

compression [13] or knowledge of the quantization noise at the encoder [40,79,80], or 

constraining the selection process such that it can be reliably repeated at the decoder 

[182]. The gain of adaptation is limited due to these assumptions and constraints. 

No significant improvement on objective quality measurements over the 2-D DWT 

has been reported, although subjective improvement has been observed. 

Other approaches that also adaptively select the filtering directions via lifting 

choose to explicitly signal the mode selections [52,53,129,200,201], i.e., using forward 

adaptation. Within this category, we have independently developed an approach that 

combines directional lifting with quincunx subsampling [30]. It was then extended to 

accommodate the case of conventional orthogonal subsampling, and to incorporate 

directional lifting and the bandeletization procedure into an unified framework [25]. 

More detailed analysis of the DWT-based direction-adaptive transforms using lifting 

is provided in our work in [26]. Thanks to the efficient representation of the filter 

selections, these approaches adapt to directional features more effectively and have 

demonstrated significant objective and subjective quality improvement for texture-

rich images. ' 

1.4 Summary of Contributions 

This dissertation presents theoretical analysis and practical constructions of new 

direction-adaptive transforms for image coding. Some results have been published 

in [25-29]. The major contributions of the dissertation are summarized below: 

• A novel statistical image model is proposed to analyze the performance of 
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transform coding. The model is able to represent locally varying textures in 

the image, hence suitable for the analysis of adaptive transforms. Using the 

model, we are able to theoretically quantify the potential improvements in im­

age coding from using an adaptive transform instead of a fixed transform. The 

analysis shows that there is a substantial gain for images rich of edges and 

lines. For other images, significant improvements can still be expected locally 

around sharp directional features, rendered by directional bases of the adaptive 

transform. The model is also used to analyze the practical direction-adaptive 

transforms proposed in the dissertation. 

• A new direction-adaptive partitioned block transform (DA-PBT) based on the 

DCT is proposed for coding of images and video sequences. At the same coding 

rate, the DA-PBT outperforms the conventional 2-D DCT by more than 2 dB for 

images with pronounced directional features. Since it avoids the typical ringing 

and checkerboard artifacts of the 2-D DCT, subjective improvements are even 

larger than indicated by the rate-distortion performance. The DA-PBT also 

outperforms a previously proposed directional DCT while demanding less com­

putation. The combination of the DA-PBT with directional prediction within 

the image or interframe prediction for video is also explored, leading to further 

improvements in the performance of hybrid coding. 

« A new direction-adaptive discrete wavelet transform (DA-DWT) is proposed for 

coding of still images. Using the lifting structure, the DA-DWT is able to locally 

adapt the filtering directions while ensuring the reversibility of the transform. 

In our experiments, the DA-DWT outperforms the conventional 2-D DWT by 

around 1 to 2 dB in PSNR for typical test images, and by up to 5.1 dB for special 

classes of images, consistent with the theoretical improvement derived for the 

DA-DWT using the image model. At low rates, different from the ringing and 

checkerboard artifacts typically observed in the 2-D DWT, the reconstruction 

error of the DA-DWT exhibits brushstroke-like artifacts that better preserve 

the geometric structure in the image, providing a visually more pleasing image 

representation. 
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1.5 Organization 

The image model is presented in Chap. 2. In Sec. 2.1, we introduce the concept of 

modeling an image by a set of texture sources, each representing a region in the image. 

In Sec. 2.2, we propose a clustering algorithm that for a given image optimizes the 

image regions and the parameters characterizing the corresponding texture sources. 

Performance analysis based on the model is presented in Sec. 2.3. 

The DA-PBT is introduced in Chap. 3. We first describe different modes of the 

DA-PBT in Sec. 3.1. The application of the DA-PBT to image coding in practice 

is discussed in Sec. 3.2. The proposed transform can be combined with block-based 

prediction to improve the performance of hybrid coding, as explained in Sec. 3.3. 

Theoretical analysis based on the image model is included in Sec. 3.4. Experimental 

results demonstrating the superior performance of the proposed transform are shown 

in Sec. 3.5. 

The DA-DWT is discussed in Chap. 4. In Sec. 4.1, we describe how different 

modes of the DA-DWT are constructed using directional lifting. A practical image 

coding framework using the DA-DWT is discussed in Sec. 4.2. Theoretical analysis 

of the DA-DWT and performance evaluation using the image model are presented in 

Sec. 4.3. Finally, experimental results demonstrating the superior performance of the 

DA-DWT both objectively and subjectively are included in Sec. 4.4. 



Chapter 2 

Statistical Image Model 

for Transform Coding Analysis 

A model that captures important attributes of a signal is an essential tool to ana­

lyze the performance of signal processing algorithms. In this chapter, we propose 

a statistical image model to study the performance of transform coding of images. 

In particular, using the image model we quantify the theoretical performance im­

provement from incorporating transforms locally adapted to image content instead of 

applying a fixed transform, further providing insights to the design of practical adap­

tive transforms for image coding. In the subsequent chapters in this dissertation, the 

model will also be used to analyze the performance of the proposed direction-adaptive 

transforms. 

In Sec. 2.1, we introduce the concept of modeling an image by a mixture of tex­

ture sources. Each texture source is a 2-D stationary random field characterized by 

a parametric autocorrelation function, modeling a particular texture that appears in 

the image. An image is segmented into regions containing different textures, each rep­

resented by a texture source. In Sec. 2.2, we propose a clustering algorithm that for 

a given image optimizes the segmentation and the parameters characterizing the cor­

responding texture sources. Performance analyses based on the model are presented 

in Sec. 2.3. 

16 
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2.1 Image Modeling with Texture Sources 

2.1.1 Mixture Model 

Stochastic image models have long been adopted to represent images for theoretical 

analysis [104,106]. These models often provide a global description of an image 

using a single set of statistics. However, different regions in an image may have 

very different characteristics. For instance, in the Monarch image shown in Fig. 2.1, 

the characteristics of the high-contrast patterns in the foreground clearly differ from 

those of the blurred background. Moreover, the various shapes and orientations in 

the foreground patterns also lead to distinct characteristics that cannot be easily 

represented by a single set of statistics. To analyze locally adaptive algorithms, a 

suitable model should be able to reflect these local variations. 

As a better alternative, a mixture model represents an image as a mixture of 

multiple components, each described by a set of statistics reflecting certain local 

characteristics. The most widely adopted mixture model for images is the Gauss 

mixture model where each component is a Gaussian source. The model is typically 

constructed by the expectation-maximization (EM) algorithm or its variations using 

the maximum-likelihood criterion [51,73], assuming that each block in the image is 

in fact a sample of the Gauss mixture. Applications of the Gauss mixture model 

constructed using the EM algorithm include, for instance, 2-D hidden Markov model 

(HMM) for image classification [125], image segmentation and image query [24], non­

linear prediction [220] and feature selection [119]. 

As shown in [4,92,95], the Gauss mixture model can also be constructed by the 

Lloyd algorithm [127,130]. Unlike the EM algorithm, the Lloyd algorithm does not 

assume that the image blocks are samples of the Gauss mixture and only finds a set 

of Gaussian components and the mapping between the blocks and the components 

that minimizes the overall distortion measure. Using quantization mismatch (QM) or 

minimum discrimination information (MDI) as the distortion measure [4,92,95], the 

resulting Gauss mixture model can be used to design robust code for image compres­

sion and has also been applied to applications in content classification [4]. Note that 
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Figure 2.1: 512 x 512 8-bit grayscale images (a) Spoke, (b) Monarch, (c) Pentagon 
and (d) Lena. 

in the case of the MDI distortion measure, the components are 2-D recursible autore-

gressive sources [123], analogous to the 1-D case successfully used in linear predictive 

coded (LPC) speech compression systems [93,94]. 

2.1.2 Texture Source 

To study the performance of locally adaptive algorithms, in particular, adaptive trans­

forms for image coding, we propose to model an image by a mixture of texture sources. 

Each texture source is itself a stationary random field representing a particular texture 

that appears in the image. Any local image neighborhood is associated with a texture 

source best describing the local statistics. Therefore, to model the performance of an 

algorithm for the image, the performance in a local neighborhood can be estimated 

from the analytical performance for the associated texture source. Additionally, the 

image-wise performance can also be derived by averaging over all neighborhoods. 
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A texture source is first defined as a 2-D continuous-space stationary zero-mean 

unit-variance random field, denoted by f(p) = t(px,py), p = (px,py)
T €. M2, modeling 

the corresponding texture in the scene. The scene is then converted by an imaging 

device into a discrete-space texture source, consisting of samples of a filtered and 

scaled version of the continuous-space texture source. The filtering operation results 

from the aperture function of the imaging device that mainly accounts for the anti­

aliasing process, and the scaling normalizes the discrete-space random field so that it 

is also unit-variance. Consequently, the discrete-space texture source is a 2-D discrete-

space stationary zero-mean unit-variance random field, denoted by t[l] = t[lx, ly], 1 = 

(lx, ly)T £ Z2. Using the discrete-space texture sources, any local image neighborhood 

is modeled as a 2-D segment of a realization of a texture source, scaled in intensity to 

match the actual local variance in the neighborhood and shifted to match the local 

mean. 

Each texture source, either continuous-space or discrete-space, is characterized by 

its power spectral density (PSD) or equivalently the autocorrelation function. It is 

desirable to have a simple parametric representation of the PSD and the autocorrela­

tion to facilitate the modeling process as well as the subsequent analysis. Despite the 

desired simplicity, the parametrization should be able to describe a variety of textures 

contained in typically images. To this end, we define two classes of image textures: 

the regular textures, such as edges, lines (double edges), and stripes (periodic edges), 

and the irregular textures, accounting for other, usually more complex, features. A 

texture source consists of two components representing the two classes of textures. In 

the following sections, we first describe a parametric formulation to model the class 

of the irregular textures in Sec. 2.1.3, followed by the parameterization for the regular 

textures in Sec. 2.1.4, both defined in the continuous space. Finally, the composition 

of the two components and the conversion from the continuous space to the discrete 

space are discussed in Sec. 2.1.5. 
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2.1.3 Elliptic Random Field 

In this section, we first consider the continuous-space irregular textures. These zero-

mean textures contain complex structures so that in any 1-D neighborhood zero-

crossings occur in a random manner. This zero-crossing pattern is similar to that of 

a mean-removed random telegraph signal, a bi-level signal with the changes in level 

(zero-crossing) occurring according to a Poisson process [121]. It can be shown that 

the autocorrelation function, denoted by r(r), of a zero-mean unit-variance random 

telegraph signal can be expressed as r(r) = exp(—2Ap|r|) where Ap is the rate of the 

underlying Poisson process. Due to this similarity, we assume that the correlation in 

the irregular textures generally decays exponentially with the distance between two 

points, also consistent with the exponentially decaying function in both the isotropic 

model [147,167] and the separable model [98] widely adopted in the literature. 

Denote the autocorrelation function of a 2-D continuous-space random field by 
rti(T) = rit(rxi Ty), r = {rx,Ty)

T 6 E2. In the isotropic model, assuming unit variance, 

• i- ' • • . • • 

^°(T|A r) = exp( -A r (^ + ^ ) i ) , ' (2.1) 

and in the separable model 

r|p(r|Aa:,A2/) = exp(-Aa: |rx |)-exp(-Ay |Ty |). (2.2) 

The contours of equal autocorrelation are circles in the isotropic model, whereas they 

are rhombi in the separable model, with the diagonals aligned with the vertical and the 

horizontal axes. Consequently, the former is not able to represent any directionality 

in image textures, and the latter can only describe directional textures oriented either 

vertically or horizontally. To better capture the directionality in the irregular textures, 

we extent the isotropic model and propose the following unit-variance autocorrelation 
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function: 

^ ( r | ^ A a ) A 6 ) = exp(-(A2ra
2 + A6

2r6
2)i)) (2.3a) 

Ta \ ( cos 9 sin 9 \ . • • 
= T> ( 2 - 3 b ) 

Tft / V — sin# cos 9 J 

where 0 < 9 < ir and 0 < Xb < Xa. The autocorrelation decays exponentially 

by exp(—Aa|ra|) along 9, and it decays at a smaller or equal rate by exp(—Aftlr&l) 

along the direction orthogonal to 9. The angle 9 therefore indicates the direction of 

the largest variation in the texture. The autocorrelation along other directions also 

decays exponentially at different rates such that the contours of equal autocorrelation 

are concentric ellipses where the minor axis is aligned with 9. Additionally, the 

length of the minor axis and that of the major axis are proportional to A"1 and 

A^1 respectively. We refer to a random field characterized by the autocorrelation 

function in (2.3) as an elliptic random field, from the structure of the autocorrelation 

function. The elliptic random field also generalizes the isotropic model in (2.1) since 

r^(r\Xr)=rL(r\0,Xr,Xr). 

Some example realizations of elliptic random fields, i.e., continuous-space irregular 

textures, are shown in Fig. 2.2. These examples are generated with Aa = — ln(0.8)/s 

where /s denotes both the horizontal and the vertical sampling frequency, A& = Xa/k(, 

with kb = 2, 8 and 32, and'0 = 0°, 22.5°, 45°, 67.5° and 90°, corresponding to 

textures with different degrees of directionality and different orientations. The value 

Att = — ln(0.8)/s is chosen in these examples such that along 8 the correlation between 

two points separated by ra = /a
-1 , i.e., the sampling period, equals 0.8. Recall that a 

texture source models a local image neighborhood normalized by the local mean and 

variance. From our observation a correlation of 0.8 between two neighboring pixels 

is typical when measured in such normalized neighborhoods. This value is smaller 

than the correlation around 0.95 often reported, for a similar set of test images, from 

measurements averaging over the entire image, normalized by the global mean and 

variance [98,147,167]. This is because, qualitatively speaking, a seemingly smooth 

region observed at the image-wise scale can appear noisy, hence less correlated, when 
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being scrutinized at a local scale. • . • • ' - . ' 

Denote the PSD of a 2-D continuous-space random field by $&•(<*>) = ^ t t K , ^ ) , 

u = (ux, uy)
T € R2. From (2.3), the PSD of an elliptic random field can be expressed 

as 

^ ( ^ ) A a , A 6 ) = - ^ - ( l + ( ^ ) 2 + ( ^ ) 2 ) - i , (2.4a) 
•*a,Ab Aa Afr . 

cos# sin# . „ . . 
• a a W - ( Z 4 b ) 

- S H I P COS0 

For an irregular texture modeled as an elliptic random field, the contours of equal' 

PSD are also concentric ellipses with the major axis aligned with 0. The length of 

the major axis and that of the minor axis are proportional to Aa and \ respectively. 

2.1.4 Periodic-Wave Random Field 

In Sec. 2.1.3, for irregular textures we assume that in any 1-D neighborhood zero-

crossings occur in a random manner, so that the correlation decays exponentially with 

the distance between two points. For regular textures containing essentially lines and 

edges, however, this assumption does not hold. •• . -. 

Consider a line in a continuous-space zero-mean regular texture and a group of 1-D 

neighborhoods that are orthogonal to the line and intersect the line. In this example, 

there are always two zero-crossings in every neighborhood, one at each edge of the 

line, with the same amount of separation. This fixed zero-crossing pattern can no 

longer be approximated by a Poisson random process. Instead, we can approximate 

these neighborhoods by segments in a 1-D random square-wave signal, defined as 

~, \rr ^ / Ao, 3keZ s.t. 0<p + kTs + £<rsTs; s(p\Ts,rs)=< (2.5) 
[ Ax, otherwise, 

where Ts is the period, AQ and A\ are two intensity levels, 0 < rs < 1 determines the 

duration of the two levels, and £ is a random phase. For the above example, any 1-D 

neighborhood intersecting with the line can be modeled as a segment of a random 
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Figure 2.2: Elliptic random field examples: Aa = — ln(0.8)/s, A& = Xa/h where 
kh = 2, 8 and 32 from bottom to top, and 9 = 0°, 22.5°, 45°, 67.5° and 90° from left 
to right. For each example, the top plot shows a realization of the continuous-space 
random field, i.e., the irregular texture being modeled, and the bottom plot shows 
the discrete-space PSD in logarithmic scale where the square region corresponds to 
—7r < Q,x < 7r from left to right and — ir < Q,y < ir from bottom to top. 

square-wave signal with Ts close to the neighborhood size and rs selected according 

to the width of the line. Similarly, a neighborhood containing only a single edge, i.e., 

a step function, is modeled as a segment of a random square-wave signal with Ts close 

to twice the neighborhood size and rs = 0.5 so that there is always one edge in every 

segment. Modeling a neighborhood containing periodic stripes can be done in the 

same fashion. Finally, it is straightforward to show that the autocorrelation function 

of a zero-mean unit-variance random square-wave signal also has a periodic-wave 
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Figure 2.3: Periodic-wave random field examples: K — 3, 9 == 45°, and from 
left to right (ua,ra) equals (0.1TT/S,0.5), (0.l7f/s,0.2), (0.27r/s,0.5), (0.27r/s,0.2) and 
(0.37r/s,0.5). For each example, the top plot shows a realization of the continuous-
space random field, i.e., the regular texture being modeled, and the bottom plot shows 
the discrete-space PSD in logarithmic scale. 

structure, more specifically a periodic sequence of mean-removed triangles, expressed 

b y •• 

2rs ^ 2TT 

rss{r\Ts,rs) = -—— > " sinc(A;rs)
2 cos(A;—-r). (2.6) 

'-P - ' 
Note that r5S(r|T s ,r s) = r g 5 ( r | T s - , l - r s ) . 

Based on the above discussion, we propose the following unit-variance autocorre­

lation function, in the same form as (2.6), to characterize regular textures: 

K 

r§(r\9,ujs,rs) = ^2^(k,rs)cos(kusra), (2.7a) 

T f t r . ) - ^ ^ . , , . (2.7b) 
2Jfc=i smc(Ars)

2 

where ra is defined in (2.3b), 0 < 9 < n, us > 0 and 0 < rs < | . Similar to the 

elliptic random fields, the tangent of the edges and lines in a regular texture aligns 

with 9. Along 9, the autocorrelation function is essentially the same as (2.6) with 

us = 7?r and the infinite sum approximated by the sum of the first K harmonics. 

In practice, we use K = 3. Orthogonal to 9 the autocorrelation is constant since 

the intensity does not change along edges. We refer to a random field characterized 
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by the autocorrelation function in (2.7) as a periodic-wave random field, again from 

the structure of the autocorrelation function. Note that the periodic-wave random 

fields enable modeling of negative autocorrelation values, often observed in actual 

measurements around edges, which cannot be described by the elliptic random fields. 

Some example realizations of the periodic-wave random fields, i.e., the continuous-

space regular textures, are shown in Fig. 2.3. 

The PSD of a periodic-wave random field can be expressed as 

K 

$g(w|0 ,w 8 , r f l )="^7(^r s )7r (<S(^^ (2.8) 
k=i 

where ua and ub are defined in (2.4b). A regular texture appears as pairs of 2-D delta 

impulses along 8 in the PSD, accounting for the off-center peaks frequently observed 

in spectrum estimation from discrete-space samples [148]. In practice, to facilitate 

numerical evaluation in the subsequent analysis, we approximate S(ua ± kua)S.(uJb) in 

(2,8) by S(uja±ku!s)5(ujb) * ^<&~(u;jO, Ar, Ar), where $ ^ is defined in (2.4), the symbol 

.* denotes the 2-D convolution operation, and Ar = 10~37r/s, i.e., the PSD of the 

isotropic model in (2.1) with a small Ar, scaled by ^ and shifted by ±.kus along 6. 

Correspondingly, the autocorrelation function in (2.7) is multiplied by r~(r |0, Ar, Ar) 

defined in (2.3). 

2.1.5 Discrete-Space Texture Source 

To account for textures containing both an irregular component and a regular com­

ponent, we define a continuous-space texture source as a 2-D stationary zero-mean 

unit-variance random field combining an elliptic random field with a periodic-wave 

random field: 

rrt(T\e)=P-rI
ii(T\e,Xa,Xb) + (l-/3)-r§(T\9,u;s,rs), 

% ( w | 0 ) = P • *L{u\9, Aa, A6) + (1 - 0) • $|(u,|0, UBI r s ) , 

(2.9a) 

(2.9b) 
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where 0 = {/?, 9, Xa, Xb,u>s, rs} and 0 < (3 < 1. The two components share the same 6 

for simplicity, and there are 6 parameters in total to describe a texture source. Note 

that taking a weighted average of the two components by (3 explicitly assumes that 

they are uncorrelated. 

< To derive the discrete-space texture source from the continuous-space definition, 

we first consider the aperture function of the imaging device, denoted by ha(p), and 

the corresponding frequency response, denoted by Ha{u)). The aperture function 

accounts for all filtering operations in the device, and the ideal aperture function is 

the ideal anti-aliasing filter with a cut-off frequency at ux = ±TT/S and uiy = ±7r/s, 

where fs denotes the sampling frequency in both dimensions. For practical imaging 

devices, we model the aperture function as a separable filter for simplicity, i.e., Ha(uj) 

= Haix(ujx\fs)Hati(uy\fs). The 1-D filter Haii(u)\fs) is modeled as a root-raised-cosine 

filter with the roll-off factor j3r = 0.5 such that |^a ; 1(a; | / s) | = 0 for fa;| > l.5nfs. 

Given fjt-(r 19) and <%(u7|6) in (2.9), the autocorrelation function and the PSD of 

the anti-aliased source, denoted by rt-t-(r|G) and $t-£(a;|6) respectively, are obtained 

b y ' 

ru(r\e) = rs(T\Q) * ha(r) * ha(-r)y '' (2.10a) 

* a H e ) = - * R { u ; [ e ) . | H B ( « ) r . • (2.10b) 

Note that $0(0;16) is now band-limited since \Ha(<jj)\ = 0 for 1^1 or \uy\ larger 

than 1.57r/s. Finally, the autocorrelation function of the discrete-space unit-variance 

texture source is obtained by 

r t t[d |e] = r t t [ 4 ^ j e ] = ; ^ _ r i , ( | , | | G ) , , (2.11) 

and the corresponding discrete-space PSD is 

1 1 :• . 

= (Q m ) E E $ « ( ( ^ - 2**)/'» ("y - 27r%)/s|G). (2.12) 
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Some examples of the discrete-space PSD with j3 = 1 in (2.9b), i.e., the elliptic 

random fields, are shown in Fig. 2.2, and others with f3 = 0, i.e., the periodic-wave 

random fields, are shown in Fig. 2.3. Notice that high-frequency patterns in the 

continuous-space image textures may lead to aliasing components in the discrete-

space image samples due to the non-ideal anti-aliasing filter. These aliasing effects 

often observed in actual images can be captured by the proposed model as shown in 

Fig. 2.2 (kb = 32, 9 = 22.5°, 67.5°). 

2.2 Texture Source Clustering 

Having defined the texture sources in Sec. 2.1, two questions remain to be answered: 

how to divide a given image into regions of different textures, and what are the texture 

sources best describing these regions? The answers to the two questions depend on 

each other, as we shall see in the following discussion. 

2.2.1 Image Neighborhood Modeling 

Recall that, in the proposed image model, any local image neighborhood is modeled as 

a 2-D segment of a realization of a particular discrete-space zero-mean unit-variance 

texture source, scaled to match the local variance and shifted to match the local 

mean. We do not explicitly impose any constraint on the size or the shape of the 

neighborhood. However, it is implied that a neighborhood contains homogeneous 

content so that it can be well represented by a single texture source. 

To represent an image neighborhood with a texture source, we divide the image 

into LB disjoint blocks of SB X SB pixels. Each block is associated with a local mean 

and a local variance, estimated from the image pixels in the vicinity of the block 

and denoted by fa and o\ respectively. Each block is also associated with a texture 

source, and any image neighborhood centered in the block is then modeled by this 

texture source, after normalization by at and fa. In general, the blocksize SB should 

be kept small to reflect the locally varying statistics in the image. However, as an 

example, for a 512 x 512 image and 8 x 8 blocks, there are 4096 blocks which requires 
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the same number of texture sources to represent, making the model impractical. 

To further simplify the model, we consider the case that only Lc texture sources, 

Lc «C LB, are included to model an image. The LB blocks are grouped into Lc 

clusters. Each cluster contains blocks located in image regions with similar textures 

and is represented by a single texture source. A clustering algorithm, similar to the 

Lloyd algorithm [127], is proposed to optimize both the choice of the Lc texture 

sources and the assignments that associate each block to one of the texture sources, 

as described in the following sections. 

2.2.2 Cost Function 

In this section we first define the cost function for the clustering algorithm, analogous 

to the distortion measure in the Lloyd algorithm [127]. For an image block, the cost 

between the block and a texture source reflects the modeling error from representing 

the image neighborhoods centered in the block by the texture source. 

The main purpose of the image model is to analyze the rate-distortion performance 

of transform coding of images in a general framework. Specifically, later explained in 

Sec. 2.3.2, coding of the coefficients in a subband in a local neighborhood is assumed 

to achieve the rate-distortion function of a Gaussian memoryless source, i.e., 

1 2 

i?s(A) = max{(V- log 2 ^} , DS(X) = mm{X,a2
3}, (2.13) 

where Rs and Ds are the rate in bits per coefficient and the MSE distortion for coding 

subband s respectively, a"l denotes the variance of the subband and A controls the 

rate-distortion trade-off [44]. Each subband can be considered as a filtered version of 

the image where the filter is determined by the corresponding basis of the transform. 

To model accurately the local rate-distortion performance of a particular subband 

around a block, the actual variance of the filter output, hence the subband variance, 

measured in the block should be closely approximated by the variance derived from 

the associated texture source. Consequently, for any filter corresponding to a basis 

of a transform of interest, a well-designed cost function should possess the property 

that, for every block, the output variance derived from a texture source with a smaller 
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(a) impulse response (b) magnitude frequency response 

Figure 2.4: The set of 100 filters used in the cost function of the clustering algorithm. 
In (a), gray represents magnitude 0. In (b), each square region corresponds to the 
2-D discrete-space frequency — n < Qx < ir from left to right and — -K < Qy < -K from 
bottom to top, and black represents magnitude 0. 

cost is in general closer to the measured variance. 

To come up with a cost function with this property, we consider the set of 100 

filters with their impulse responses and the corresponding frequency responses shown 

in Fig. 2.4-(a) and Fig. 2.4-(b) respectively. These filters correspond to 12 subsets of 

the 1-D DCT bases along different directions in a maximum support of 13 x 13 pixels. 

For instance, the first subset contains the bases of the 13-point DCT aligned vertically, 

shown in the first column and the beginning of the second column in Fig. 2.4-(a). The 

second subset contains the bases of the 5-point DCT along a direction with a slope 

^ = —3, shown in the second column in Fig. 2.4-(a). The set of filters is selected for 

its simplicity and its ability to localize spectral components covering the entire 2-D 

frequency space with different orientations, as shown in Fig. 2.4-(b). We apply each 

of these filters to the image, and denote the measured output variance of the i-th 

filter in the 6-th block by a^. Similarly, denote the output variance of the i-ih filter 

derived from a texture source described by a parameter set 0 by o^0. We argue that 
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a texture source with <j|e closely approximating d^/of. (of defined in Sec. 2.2.1), 

for alH = 0, • • • , 99, captures the spectral structure in the vicinity of the 6-th block, 

and therefore it is able to provide an accurate model for the output variances of 

other filters, e.g., the subband variances resulting from a transform. Based on this 

argument, for the 6-th block, we define the cost for associating the block with a 

texture source described by © as 

99 

4(0) = J2Krk • ( ^ e - ^) 2 - (2.14) 
i=0 

where 0 < k < 2. Before discussing the choice of k, we first note that in (2.13), for a 

small A where A < of for subband s, the distortion equals A and the modeling error 

in rate from using a model variance of instead of the actual of, is proportional to 

log2(of/of). For a large A where A > of, the rate is zero and the modeling error in 

distortion is of — of. 

In (2.14), when A; = 2 the cost is the sum of the squared normalized errors, i.e., 

(abai\&)/^bi — 1- In this case, a small cost indicates that the normalized errors for 

all filters in the set are small in magnitude, and thus presumably the normalized 

error of the subband variance resulting from any transform basis is also small. This 

ensures that, with a small A, both the distortion and the rate in (2.13) for a subband 

are accurately modeled. However, for a large subband variance, a small normalized 

error can lead to a large non-normalized error, therefore for a large A resulting in 

a significant modeling error in distortion. On the contrary, when k = 0 the cost is 

the sum of the squared non-normalized errors, i.e., ofo"|e — ofj. With a large A, a 

small cost, hence small non-normalized errors, gives an accurate model for both the 

rate and the distortion. However, for a small variance, a small non-normalized error 

can still lead to a large normalized error, resulting in a substantial modeling error in 

rate with a small A. For most values of A corresponding to the typical rate-distortion 

operating points for image coding in practice, A is larger than the subband variance 

for some subbands and smaller for the others. As a compromise, we choose k = 1.5 

from experiments such that the model rate-distortion performance best matches the 

actual performance for several transforms we considered. 
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To improve the accuracy of the proposed image model, we further include an ad­

ditive white-noise component associated with each block such that the image neigh­

borhoods centered in the block, after normalization by the local mean and vari­

ance, is modeled by a random field characterized by the autocorrelation function 

a(b)5[0,0] + (I — a(b))ru[d\Q] where 0 < a(b) < 1 determines the relative white-noise 

level associated with the fe-th block, and r t t[d|6] denotes the discrete-space autocorre­

lation function defined in (2.11). With the white-noise component, the cost function 

in (2.14) is modified accordingly to 

99 

db(e,a(6)) = ^ ( ^ ) " f e - ( ^ 2 ( « W + ( l - « W ) ^ G ) - ^ ) 2 - (2-15) 
8=0 

2.2.3 Clustering Algorithm 

Let ©c denote the set of 6 parameters characterizing the c-th texture source, and 

m(b) = c denote the membership function that associates the &-th block with the c-th 

texture source. We now describe a clustering algorithm that optimizes the texture 

sources 0C, c = 0, • • • , Lc~ 1, and the relative white-noise levels a(b) and the member­

ship function m(b), b = 0, • • • , LB — 1, such that the overall cost Ylb=o <4(®m(&)> a(,fy) 

is minimized. We begin the algorithm by setting a(b) = 0 and initializing m(b) via 

evenly partitioning the blocks into Lc clusters, followed by the three optimization 

steps described below. 

In Step 1, given the initialized a(b) and m(fe), for each texture source the param­

eters are optimized to minimize the total cost in the corresponding cluster, i.e., 

9 c = argmin ^ db(G,a{b)), (2.16) 
0 {6|m(6)=c} 

hence also minimizing the overall cost. The procedure that optimizes the parameters 

will be further discussed in Sec. 2.2.4. 

In Step 2, given the texture sources resulting from Step 1 and the initialized m(fe), 

for every block the white-noise level a[b) minimizing the cost db(@m(b),ct(b)) is solved 
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analytically by setting the derivative of (2.15) with respect to a(b) to zero, i.e., 

a(6) = max{0,mm{l, }}, (2.17) 

for all 6 = 0, • • • ,LB — 1, again minimizing the overall cost. 

In Step 3, given the texture sources and a(b), m(b) is re-selected by 

m(b) = argmin db(Qc, a(b)), (2.18) 
c=0 , - - ,L c - l 

for all b = 0, • • • , LB — 1, also minimizing the overall cost. The algorithm continues 

by iterating the three steps until the overall cost converges to a local minimum. 

The image models constructed using the proposed algorithm for Spoke and Pentagon 

in Fig. 2.1 are shown in Fig. 2.5. In these examples, we use Lc = 9 determined 

empirically for the two images as a compromise between the model complexity and 

accuracy. 

2.2.4 Parameter Estimation 

To solve (2.16) in Step 1 of the clustering algorithm, we discretize the parameters 9, 

Xa, Af,, u>s and r3, similar to our previous work in [28], and estimate the parameter 

set approximating the solution of (2.16). Because a texture source is composed of 

an irregular texture component and a regular texture component, as indicated in 

(2.9), O\Q in (2.15) derived from the texture source can also be decomposed into 

two corresponding components, i.e., o\@ = /3cr|0/ + (1 — j3)olQR, where alQl and 

°^\QR result from the irregular and the regular components respectively. Given the 

choices of 9, Xa, Xj,, us and rs, a?.Ql and O-^QR for every filter included in (2.15) can be 

computed, and the optimal /?.is determined by setting the derivative of the objective 

in (2.16) with respect to (5 to zero. Therefore, the optimal /3 is a function of the 

other parameters, and finding the optimal parameter set involves searching in a 5-D 

discrete parameter space. 

In the first iteration of the clustering algorithm, instead of performing a full search 
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(a) Spoke, a(b) (b) Spoke, m(b) (c) Spoke, <3>tt(e
J'n) 

(d) Pentagon, a(b) (e) Pentagon, m(b) (f) Pentagon, ^ (e 7 ' " ) 

Figure 2.5: Image model for Spoke and Pentagon. In (a) and (d), a(6) indicates the 
relative white-noise level in each 8 x 8 block with values between 0 and 1, the brighter 
the higher. In (b) and (e), the 9 masked images indicate the blocks that are assigned 
to each of the 9 clusters. In (c) and (f), the discrete-space PSD, <J>4t(e

jn), of each of 
the 9 texture sources representing the 9 clusters is plotted in logarithmic scale. 

of the 5 parameters, we conduct the following initialization procedure. First, for each 

cluster we measure the sample autocorrelation function, denoted by r* [d], with a small 

extend of d, from image neighborhoods centered in blocks contained in the cluster. 

The angle 6 is initialized as the direction with the largest average squared gradi­

ent in r*[d], and a sequence of autocorrelation values along 9 and another sequence 

orthogonal to 9 are interpolated from r*[d] and denoted by {r*a[d]} and {r*6[d]} 

respectively. Second, a joint search of Aa, us and rs are carried out by minimizing 

the sum of squared differences between the non-parametric sequence {r*a[d]} and the 
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corresponding autocorrelation values derived from the parameters by 

rtt,a[d\Xa,Us,rs] = /?exp(-Aa—) + (1 - j3)^~t{k,rs)cos(kus—). (2.19) 
h fc=1 Is 

Note that j3 is again a function of the selected Aa, us andr s . Finally, given the other 

parameters, Xb is initialized similarly by minimizing the sum of squared differences 

between {r*6[d]} and the corresponding values computed by 

rtt}b[d\\b]=pexv(-\b-y) + (l-/3). (2.20) 
Is 

After the initialization procedure, a joint search on {6, Xa, Xb, ^a, fs} is performed 

in the vicinity of the initial values to further refine the estimation. In the subsequent 

iterations, the initial values can either be the parameters estimated in the previous 

iteration or that obtained by applying again the initialization procedure, whichever 

leads to a smaller cost. In each iteration, we only find a suboptimal solution of (2.16) 

due to the discretization and the reduced search space for the refinement. Nonetheless, 

as long as the total cost in each cluster decreases, so does the overall cost, and the 

iterative clustering algorithm continues to converge to a local minimum. 

2.3 Transform Coding Analysis 

Having discussed the construction of the proposed image model, in the following 

sections we present theoretical analyses based on the model that identify the poten­

tial improvement in transform coding of images using transforms adapted to image 

textures instead of a fixed transform. 

2.3.1 Transform Coding Gain 

The transform coding gain measures the performance gain of applying a particular 

transform to encode source samples over a reference scheme that encodes the samples 

directly using scalar quantization and independent coding of the samples at a fixed 
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high rate [81,185]. Assume that the source samples are jointly Gaussian, the transform 

is orthonormal and it decomposes the source samples into S subbands, a^ denotes the 

variance of subband s, and r)s denotes the ratio between the number of coefficients 

in subband s and the total number of coefficients. We further assume that each 

subband is encoded independently from others, and in each subband the coefficients 

are encoded with scalar quantization and independent coding of the coefficients at a 

fixed high rate with optimal rate allocation across subbands. The transform coding 

gain, denoted by GT for a transform T, is defined as 

Es - i 2 
s=o Va<rj 

GT = ZsSIu I"! • (2-21) 

The numerator is the source variance and is proportional to the MSE distortion in 

the reconstruction using the reference scheme with a given rate. The denominator 

is a weighted geometric mean of the subband variances, and is also proportional to 

the MSE distortion in the reconstruction using the transform with a given rate (the 

average rate across subbands). The transform coding gain is defined as the ratio 

between the two distortions when the source is coded at the same rate, i.e., the factor 

of reduction in distortion resulting from the transform. Note that, from (2.21), a 

larger transform coding gain is achieved if the transform packs more source energy 

into fewer subbands. 

Now we consider Gaussian texture sources containing only the elliptic random 

field component described in Sec. 2.1.3, with parameters Aa = — ln(0.8)/s, A& = Xa/fa 

where kf, = 2, 4, 8, 16, and 32, and 9 from 0° to 90°, modeling image textures with 

different degrees of directionality, where a larger k(, leads to stronger directionality, 

and different orientations. The additional assumption that the texture source is Gaus­

sian will be elaborated in the next section (Sec. 2.3.2). We consider only the elliptic 

random field rather than the composite texture source described in Sec. 2.11 because 

of its simple parameterization directly indicating the directionality and orientation 

in image textures. Some examples of the source model are illustrated in Fig. 2.2. 

Given the source model, we derive the subband variances and the resulting transform 

coding gain for the 8 x 8 DCT and the 8 x 8 KLT, where an unique KLT is derived 
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Figure 2.6: Transform coding gain improvement by the 8 x 8 KLT over the 8 x 8 
DCT. The source is the elliptic random field with Aa = — ln(0.8)/s, A& = Xa/kb where 
fcft = 2, 4, 8, 16, and 32, and 6 from 0° to 90°. A darker line corresponds to a larger 
kb, i.e., stronger directionality. 

for each set of the source parameters. The transform coding gain improvement in 

decibel (dB) by the KLT over the 2-D DCT, i.e., 10-log10 §£££, is plotted in Fig. 2.6. 

Since the KLT is the optimal transform that maximizes the transform coding gain 

for a given source and a given transform dimension assuming asymptotically optimal 

rate allocation [81], this measurement indicates the maximal improvement in recon­

struction quality achievable by a transform adapted to the source instead of the fixed 

2-D DCT, when the source is coded at the same rate. Note that with the high-rate 

scalar quantization and independent coding assumption, an improvement of 6.02 dB 

in the reconstruction quality at the same rate is equivalent to a rate reduction of 1 

bit per sample to achieve the same quality [44,81]. 

In Fig. 2.6, the improvement increases with the directionality in the source, and 

the improvement is most significant for directional textures oriented around 45°. For 

directional textures oriented near 0° and 90°, there is little room for improvement 

using an adaptive transform and the 2-D DCT is nearly optimal. Notice that the 

r 
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improvement does not vary smoothly for sources with stronger directionality, as indi­

cated by the notches at the top curves in Fig. 2.6, because of the aliasing components 

that appear in the source for certain orientations, as discussed in Sec. 2.1.5 and illus­

trated in Fig. 2.2. 

2.3.2 Rate-Distortion Performance 

In this section, we analyze the rate-distortion performance for transform coding of 

images, both for the KLT and the 2-D DCT, with the test images shown in Fig. 2.1. 

For each image, an image model is first constructed by the texture source clustering 

algorithm presented in Sec. 2.2. For each constituent texture source modeling the 

image, the corresponding 8 x 8 KLT is derived from the parametric autocorrelation 

function. As an example, the 16 KLT bases having the largest variances for each 

of the 9 texture sources modeling Spoke and Pentagon, illustrated in Fig. 2.5, are 

shown in Fig. 2.7-(a) and Fig. 2.7-(b) respectively. Notice that unlike the 2-D DCT 

composed of 1-D vertical and horizontal operations, the KLT contains directional 

bases aligned with the orientation of the texture (sources, and these bases are usually 

among the ones with the largest variances. 

To model the subband coefficients, it has long been observed that for natural 

images the distribution of a DCT subband (except for the DC subband) across the 

entire image can be well approximated by a Laplacian distribution [68,161]. The 

works in [122] and [118] further showed that within a local region the subband is 

better approximated by a Gaussian distribution. Additionally, the local variances 

of the image samples are typically exponentially distributed across the image. As a 

result, the distribution of a subband over the image can be approximated by a Gauss 

mixture with an exponential mixing distribution, which is indeed Laplacian. Based 

on these prior works, we first assume that the subbands in a local image region, e.g., 

around a block, are Gaussian distributed. Note that the neighborhoods centered in a 

block is modeled as segments of a realization of the associated texture source, mixed 

with additive white noise and then scaled in intensity. Therefore, with a further 

assumption that the additive noise is Gaussian, the underlying texture sources are 
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Figure 2.7: Each of the 3 x 3 plots corresponds to one of the nine texture sources 
modeling Spoke and Pentagon, as illustrated in Fig. 2.5. (a) and (b): The 16 bases of 
the 8 x 8 KLT having the largest variances, ordered with descending variances from 
left to right and then top to bottom, (c) and (d): The rate-distortion performance 
of transform coding for each texture source. In each plot, the top dash-dotted curve 
represents the performance of the 8 x 8 KLT, the middle dashed curve represents the 
8 x 8 DCT, and the bottom dotted straight line represents direct coding of the source 
samples without a transform. 
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also Gaussian. 

We continue the analysis by considering the rate-distortion performance for each 

unit-variance texture source, now assumed to be Gaussian based on the above argu­

ments, with the 8 x 8 KLT and the 8 x 8 DCT. The S subbands, S = 64, from the 

texture source are therefore also Gaussian with variances determined by the source. 

In this analysis we consider the case that every subband is coded independently from 

others, and the coding performance achieves the rate-distortion function of Gaussian 

memoryless sources, i.e., 

^CiS(A) = m a x { 0 , ^ l o g 2 ^ } , D c , s(A)=min{A )a cy, (2.22) 

where Rcj and DC)S are the rate in bits per coefficient and the MSE distortion for 

coding subband s in the c-th texture source respectively, cr^s denotes the variance 

of the subband and A controls the rate-distortion trade-off [44,185]. Consequently, 

the total rate and the MSE distortion for coding the c-th texture source using these 

transforms are computed by 

s-i s - i 

Rc(\) = J2vsRc,sW, Dc(\) = Yl71sDc,sW (2-23) 
s=0 s=0 

respectively, where r]s, as defined for (2.21), equals ^ for the 8 x 8 transforms. Note 

that all subbands share the same A so that optimal rate allocation among subbands 

is achieved, and a smaller A leads to a higher total rate [185]. In Fig. 2.7-(c) for 

Spoke and Fig. 2.7-(d) for Pentagon, the performance of the 8 x 8 KLT and DCT 

for each texture source is plotted, together with a reference scheme that encodes the 

source samples directly without a transform, i.e., S' = 1 and a^0 = 1 equals the 

source variance. In each plot, the rate is represented by bits per source sample, and 

the distortion is represented by the signal-to-noise ratio (SNR) in decibel (dB), i.e., 

-10 • log10Dc(A). Notice that at high rates (small A) DCjS = a2
cs. 2_2i ic 's, i.e., the 

SNR increases by 6.02 dB for every increase in rate of 1 bit per sample, and the gap 

between either the KLT or the DCT performance to the reference scheme is indeed 

the transform coding gain as defined in (2.21). Furthermore, comparing Fig. 2.7 with 
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Fig. 2.5, the texture sources with the most improvements by the KLT over the DCT 

are the ones with stronger directionality and oriented near 45°, consistent with the 

conclusion in Sec. 2.3.1. These improvements are enabled by the directional bases in 

the KLT that capture most of the energy in the directional textures. 

Following the above analysis for each texture source, we now analyze the image-

wise rate-distortion performance. We consider a KLT scheme that operates with LQ 

modes, each corresponding to the 8 x 8 KLT derived from one of the Lc texture 

sources modeling the image. For each block, the KLT scheme adaptively selects the 

mode corresponding to the texture source associated with the block. The model 

subband variance around a block, denoted by u\s for subband s and the b-th block, 

resulting from either the KLT or the DCT, is computed by 

<s = ^W) + \l-a{b))a%QmW\ (2.24) 

where a2
lr, denotes the subband variance derived from the associated texture 

source. 

Note that the analysis is meant to model the relative performance between the 

KLT and the DCT in a general framework for transform coding of images, and there­

fore quantify the potential performance improvement by transforms locally adapted 

to the image over a fixed transform. It is not intended to model the absolute perfor­

mance of a particular image coding system. To this end, for coding of the subband 

coefficients, we still assume independent coding across subbands and in each subband 

ideal coding achieving the rate-distortion function of Gaussian memoryless sources. 

The local rate-distortion performance around a block is therefore modeled by 

l a 2 

Rbt3(X) = max{0, - log2 - ^ } , £>M(A) = min{A, a2J, (2.25) 

where i4,s and D^s are the rate and the distortion for coding subband s around the 

b-th block respectively, and a2
s denotes the variance of the subband. Consequently, 
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Figure 2.8: Model image-wise rate-distortion performance of the 8 x 8 KLT and the 
8 x 8 DCT. 

the image-wise performance is 

LB-IS-I LB-\ s - i Rw = -r- E E^'M °w = 7- E E^-w 
-^•B i._n o—n # j ._n „_n 

(2.26) 
6=0 s=0 6=0 s = 0 

where LB is the number of blocks in the image. Again, the same A is used across all 

subbands and blocks so that optimal rate allocation is achieved. For the test images 

in Fig. 2.1, the model image-wise rate-distortion performance is plotted in Fig. 2.8, 

for both the KLT and the DCT. For every image, 9 clusters are used to construct 

the image model. In each plot, the rate is represented by bits per image sample, 

or bits per pixel (bpp), and the distortion is represented by the peak signal-to-noise 
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ratio (PSNR) in decibel, defined as 10 • log10 -grW, a popular measurement for the 

reconstruction quality of 8-bit grayscale images. 

The analysis shows that using a transform adapted to the local statistics, even 

with only a limited degree of adaptation (9 modes), there is a potential performance 

gain of up to 3dB for Spoke, l dB for Monarch and Pentagon, and 0.5 dB for Lena, 

over the fixed DCT scheme with the same 8 x 8 blocks and the same rate. The image-

wise performance gain may be less significant for images containing fewer directional 

features, e.g., Lena. Nonetheless, locally around sharp directional features, especially 

those oriented close to 45°, we can still expect a gain in the order of 5 to 10 dB as 

suggested by the texture-wise performance in Fig. 2.7-(c) and Fig. 2.7-(d), rendered 

by the directional bases. Note that in this theoretical analysis, we neglect the rate 

overhead required to signal the the constituent KLT, or equivalently the texture 

source parameters, and the mode selections, i.e., the association between the blocks 

and the texture sources. In practical image coding systems, this overhead for using an 

adaptive transform should be considered as we shall address in the following chapters. 

2.4 Summary 

We have proposed to model an image by a set of texture sources to cope with locally 

varying statistics. Each texture source is a 2-D stationary random field composed of 

an irregular and a regular texture component, represented by the elliptic random field 

and the periodic-wave random field respectively. Using the texture sources, any image 

neighborhood centered in a particular image block is modeled as a 2^D segment of a 

realization of the texture source associated with the block, mixed with additive white 

noise and normalized by the local variance and the local mean around the block. For 

a given image, to jointly determine the parameters of the texture sources modeling 

the image, the association between the image blocks and the texture sources, and 

the white-noise level in each block, an iterative clustering algorithm is proposed to 

optimize the image model for the analysis of transform coding performance. 

Using the model, we first consider image textures with different degrees of direc­

tionality and orientations, and evaluate the transform coding gain improvement by 
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the KLT adapted to the textures over the fixed 2-D DCT. The results show that an 

adaptive transform brings more improvements for textures with stronger directional­

ity, and in particular for directional textures oriented further away from the vertical 

and the horizontal direction. Rate-distortion analysis based on the image model is 

also performed for a set of test images. The analysis indicates that using a trans­

form adapted to local statistics in the image instead of a fixed transform, there is a 

substantial performance gain for images rich of edges and lines. For other images, 

significant improvements can still be expected locally around sharp directional fea­

tures, rendered by the directional bases of the adaptive transform aligned with the 

image features. 



Chapter 3 

Direction™ Adaptive 

Part i t ioned Block Transform 

In the previous chapter, we have shown that image coding performance can be im­

proved substantially using the KLT locally adapted to the image statistics over a fixed 

transform. The improvement is mainly contributed from the directional bases of the 

KLT aligned with directional image features. This suggests that instead of using the 

KLT, the performance improvement may be rendered by a practical transform with 

a number of modes, each providing a set of directional bases, that can be adaptively 

selected according to the local directionality in the image. In this chapter, we propose 

such a direction-adaptive transform constructed using simple 1-D DCTs, referred to 

as the direction-adaptive partitioned block transform (DA-PBT). For image coding, 

the best mode of the DA-PBT is selected at the encoder for each image block using a 

rate-distortion optimized framework and signaled to the decoder as side information. 

In Sec. 3.1, we describe different modes of the DA-PBT, each mode denning a set 

of transform directions, a block partitioning scheme, coefficient ordering for entropy 

coding and a quantization matrix. The application of the DA-PBT to image coding in 

practice is discussed in Sec. 3.2. The proposed transform can also be combined with 

block-based predictive coding widely adopted in image and video coding techniques, 

as explained in Sec. 3.3. Theoretical analysis of the coding performance using the 

DA-PBT based on the image model presented in the previous chapter is included in 

44 
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Figure 3.1: The transform directions and the encoding order of the DDCT, the DA-BT 
and the DA-PBT. In (lc), r} and r\ are also connected to r\ and r\ respectively, but 
the lines are omitted for clarity. 

Sec. 3.4. Finally, experimental results demonstrating the superior performance of the 

proposed transform are shown in Sec. 3.5. 

3.1 Construction of DA-PBT 

To efficiently represent blocks containing directional features, the proposed DA-PBT 

combines a direction-adaptive block transform (DA-BT) with a direction-adaptive 

block partitioning scheme, to be discussed in Sec. 3.1.1 and Sec. 3.1.2 respectively. 

3.1.1 Direction-Adaptive Block Transform 

In conventional image coding, the 2-D DCT is composed of two stages of separable 

1-D transforms. Taking the 4 x 4 DCT as an example, the four columns in the 4 x 4 

block shown in Fig. 3.1-(la) are first transformed in Stage 1 into columns of DCT 

coefficients, {c|~4}, i — l,--- ,4. Subsequently, in Stage 2 the rows of coefficients 

are further transformed into {r]"4}, j = 1, • • • ,4. To encode the DCT coefficients, a 
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zigzag scanning order is adopted, as indicated in the rightmost plot in Fig. 3.1-(la), 

so that the coefficients generally decrease in magnitude along the scan. This property 

can then be exploited in entropy coding of the quantization indices [109,140], as we 

shall discuss in Sec. 3.2.2. 

To our knowledge, the work most closely related to our proposed DA-PBT is the 

directional DCT (DDCT) [218,219]. The DDCT consists of directional modes defined 

similarly as the intra-prediction modes of H.264 [206], in addition to the conventional 

2-D DCT. The non-directional mode, the vertical and the horizontal mode in the 

DDCT all correspond to the conventional transform (Fig. 3.1-(la)), whereas the other 

modes, however, are constructed by varying the transform directions. For instance, 

as shown in Fig. 3.1-(lb), in Stage 1 of the diagonal-down-right mode, the 1-D DCTs, 

possibly with different lengths, are applied to the sequences along the corresponding 

direction. In Stage 2, another set of the 1-D DCTs is further applied to the set 

of coefficients from Stage 1 with the same superscript index, e.g., {cj^7}, because 

they represent the frequency components at similar spectral locations and are likely 

to exhibit higher correlation [219]. To encode the resulting coefficients, a zigzag 

scanning order modified from that in Fig. 3.1-(la) is adopted, as shown in Fig. 3.1-

(lb). Similarly, the transforms and the scanning order in the vertical-right mode of 

the DDCT are illustrated in Fig. 3.1-(lc). Note that the Stage-1 direction in the 

DDCT does not match exactly with that defined in the vertical-right mode of H.264, 

i.e., with a slope ^ = —2. The remaining modes can be derived by flipping the 

operations in the diagonal-down-right or the vertical-right mode in the appropriate 

dimensions. 

There are two key differences between the proposed DA-BT and the DDCT. The 

first difference is in the choice of the transform directions in the vertical-right mode 

(and the three associated modes with flipped directions). We argue that the direction 

in Stage 1 of the DDCT (Fig. 3.1-(lc)) is still close to the vertical direction, and there­

fore the vertical-right mode may not render much benefit over the non-directional or 

the vertical mode. To provide a directional selectivity that covers all possible feature 

orientations more evenly, we adopt the configuration in Fig. 3.1-(2c). Aside from the 

above consideration, the adopted direction matches that in H.264 [206], allowing a 
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(a) DCT (b) DA-BT (c) DA-PBT (d) DCT (e) DA-BT (f) DA-PBT 

Figure 3.2: Transform coefficient magnitude of 8 x 8 image blocks. The conventional 
2-D DCT is used in (a) and (d). For the DA-BT and the DA-PBT, the diagonal-
down-right mode is used in (b) and (c) and the vertical-right mode is used in (e) and 
(f). The original block is shown at the top, together with the Stage-1 directions. The 
magnitude of the coefficients resulting from Stage 1 is shown in the middle, together 
with the Stage-2 directions, and the magnitude of the final coefficients is shown at 
the bottom. In (c) and (f), the coefficients involved in Stage 3 of the DA-PBT are 
indicated by the squares. 

simpler implementation when the DA-BT is combined with intra prediction, as we 

shall discuss in Sec. 3.3.1. 

The second difference is not in the transform itself, but in the ordering when en­

coding the coefficients. Consider the diagonal-down-right mode of the DDCT shown 

in Fig. 3.1-(lb). In general, this mode is selected if edges in the corresponding ori­

entation appear in the block. Since the 1-D transforms in Stage 1 are aligned with 

the edges, energy is concentrated towards the DC coefficients, i.e., {c^ 7 } , and the 

sequence containing the DC coefficients approximately consists of one or multiple step 

transitions. Consequently, after Stage 2, most energy still resides in {r\~7} and the 

low-frequency components are more likely to have larger magnitude due to the spec­

tral characteristics of the step function. Therefore, we propose the encoding order 

shown in Fig. 3.1-(2b), which is different from the modified zigzag order used in the 
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DDCT (Fig. 3.1-(lb)). With the same argument, instead of applying the same op­

erations for the vertical (or horizontal) mode and the non-directional mode as in the 

DDCT, the encoding order of the verticalmode is modified as shown in Fig. 3.1-(2a), 

although the transform remains the same. 

In addition to the non-directional mode that corresponds to the 2-D DCT, the 

DA-BT consists of eight directional modes: vertical, vertical-right, diagonal-down­

right, horizontal-down, horizontal, horizontal-up, diagonal-down-left, and vertical-

left, all can be derived from the configurations in Fig. 3.1. The configurations for 

4 x 4 blocks can be directly extended to 8 x 8 or 16 x 16 blocks. To illustrate the 

performance of the DA-BT, an 8 x 8 block containing diagonal edges is used as an 

example and the coefficient magnitude resulting from the conventional 2-D DCT and 

the DA-BT are shown in Fig. 3.2-(a) and Fig. 3.2-(b) respectively. In this example, 

many of the 2-D DCT coefficients still retain large magnitude. Additionally, the 

coefficient magnitude does not generally decrease along the zigzag order, making 

entropy coding designed based on this assumption inefficient. On the contrary, the 

DA-BT concentrates the energy to the coefficients located at the first column and 

the first row while keeping the others zero. It is also evident that the encoding order 

proposed in Fig. 3.1-(2b) better exploits the distribution of the coefficients than the 

order adopted in DDCT (Fig. 3.1-(lb)). 

Note that in the 2-D DCT, the DC level of a block only affects the DC coefficient, 

i.e., r\ in Fig. 3.1-(la). However, for the DA-BT as well as the DDCT, the DC level 

may contribute to other coefficients, e.g., {rf~7} in Fig. 3.1-(lb), due to the unequal 

lengths of the Stage-1 transforms as discussed in the shape-adaptive DCT literature 

[112]. This leakage of the DC energy into the non-DC coefficients hampers energy 

concentration. To eliminate the problem, the DC separation procedure proposed 

in [112] is adopted in both the DDCT and the DA-BT. To transform a block, the 

block mean, denoted by m, is first subtracted from all pixels. After two stages 

of the transform, the DC coefficient r\ is then set to \fNm where N denotes the 

number of pixels in the block, equal to the DC coefficient of the 2-D DCT. It has 

been shown in [112] that the resulting transform is reversible using an additional 

correction procedure. With DC separation/correction, the DC level affects only the 
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DC coefficient, and, in particular, a constant block leads to at most one nonzero 

coefficient. 

3.1.2 Direction-Adaptive Block Partitioning 

Compared to the 2-D DCT, one disadvantage of both the DDCT and the DA-BT 

is the increase in the maximum length of the constituent 1-D DCTs. For an S x S 

block (S > 2), the 2-D DCT requires length-S 1-D DCTs, whereas the DDCT and the 

DA-BT require length-(2S-l) (Fig. 3.1-(lb)) and length-(3S-2) DCTs (Fig. 3.1-(2c)) 

respectively. To reduce the complexity of the DA-BT, we propose to further divide 

the block into directional partitions, indicated by different shades in Fig. 3.1-(3b) 

and Fig. 3.1-(3c). The partition boundaries are aligned with the transform direction 

in Stage 1, and we limit the Stage-2 transforms so that they do not extend across 

partition boundaries. In fact, with the proposed partitioning that divides a block 

into 2 partitions for the diagonal-down-right mode (Fig. 3.1-(3b)) and 3 partitions for 

the vertical-right mode (Fig. 3.1-(3c)), the maximum required length is S, equal to 

that of the 2-D DCT. To further exploit the correlation among partitions, a Stage-

3 transform is applied to the DC coefficients resulting from Stage 2, indicated by 

the squares in Fig. 3.1-(3). Additionally, the encoding order is modified to cope 

with the partitioning. The sequences that originally belong to the same sequence in 

the un-partitioned DA-BT are encoded in an interleaved manner. For instance, in 

Fig. 3.1-(3b), {r^3} and {r]"2} are ordered as r\, r\, rf, r\ and rf. We refer to the 

partitioned version of the DA-BT as the DA-PBT. 

To accommodate the addition of the partitioning and the Stage-3 transform, we 

propose a two-level DC separation/correction procedure similar to the one-level pro­

cedure in [112]. To apply the transform, the block mean, /x, is first subtracted, and 

the mean in each block-mean-removed partition, denoted by fxp, p = 1 • • • P where P 

is the number of partitions, is further removed, followed by the Stage-1 and Stage-2 

transforms. The resulting Stage-2 DC coefficients, e.g., r\. and r\ in Fig. 3.1-(3b), are 

then set to ^JWv\iv where Np is the number of pixels in the corresponding partition. 

Finally, the Stage-3 transform is applied and the resulting DC coefficient is replaced 
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by y/Nfi where N is the number of pixels in the block. 

To reconstruct the block, the DC coefficient is first replaced by 0 followed by the 

inverse Stage-3 transform. A DC correction procedure similar to that in [112] is then 

applied to correct the resulting Stage-2 DC coefficients. After performing the in­

verse Stage-2 transforms in each partition, the Stage-1 DC coefficients, e.g., {c^ 7} in 

Fig. 3.1-(3b), are then corrected, followed by the inverse Stage-1 transforms. This DC 

separation/correction procedure ensures the reversibility of the transform. Further­

more, a constant block results in at most one nonzero coefficient after three stages of 

the transform, and a constant partition also leads to at most one nonzero coefficient 

in the partition, an additional property achieved through the two-level procedure. 

Note that the procedure causes a slight deviation from the orthonormality of the 

transform. Quantitatively, for unit-variance white noise in the transform coefficients, 

the consequent noise variance in the reconstructed block is below 1.008, 1.003, and 

1.001 for 4 x 4, 8 x 8, and 16 x 16 blocks respectively for all the modes in the DA-PBT. 

The proposed partitioning not only reduces the complexity, but also improves 

energy concentration. For instance, consider the image block in Fig. 3.2-(c) where 

the edges are contained only in the upper-right partition of the diagonal-down-right 

mode in the DA-PBT. The energy of the DA-PBT coefficients is mostly confined 

in the upper-right partition whereas the other partition consists of only one nonzero 

coefficient, exhibiting improved concentration compared to the DA-BT and the 2-D 

DCT. A similar observation can be made with the image block and the corresponding 

coefficients in Fig. 3.2-(d)-(f). Moreover, the partitioning also improves visual quality 

of lossy reconstructions because the compression artifacts generally appear only in 

the partition containing the edges rather than the whole block. To further improve 

energy concentration and visual quality for vertical and horizontal image features, 

the partitioning can be extended to the vertical and the horizontal mode by dividing 

the block into two rectangular partitions as illustrated in Fig. 3.1-(3a). 

The basis functions of the 8 x 8 DA-PBT for different modes are shown in Fig. 3.3, 

together with the magnitude of the corresponding frequency responses. In the direc­

tional modes, it is clear that the bases are divided into multiple sets, each responsible 

for a partition in the block. As discussed, this helps to confine the energy of image 



CHAPTER 3. DA-PBT 51 

features spatially within the associated set of coefficients. Additionally, the direc­

tional frequency bands resulting from the directional bases also help to confine the 

energy of directional features spectrally in a few coefficients. 

3.1.3 Quantization 

Given the quantization stepsize Q that controls the quality of the reconstruction, a 

transform coefficient c is mapped to the quantization index 77 by 

• v = \ sign(c)Lg + Aj, g + A > 0 , M 

I 0, otherwise, 

where A < 1, and then reconstructed to the corresponding representative level cv. 

In JPEG, A = I and cv = r]Q so that every quantization interval has the same 

size and the representative levels are always located in the middle of a quantization 

interval [109]. In general, a different A may be used to adjust the size of the zero 

interval, i.e., the interval containing zero, and the representative levels can be specified 

by 

. J sign(77)(M-A + OQ, V^O, 
cn= < _ n (3-2) 

{ 0, 77 = 0, 

where 0 < £ < 1 determines the placement of cv within the quantization interval. 

For example, to better suit the skewed distribution of the transform coefficients, the 

H.264 reference software uses A = | and £ = A so that the zero interval is larger 

than the others and the representative levels of the nonzero intervals are closer to 

the boundary with the lower value [202]. In our implementation, for simplicity we 

directly adopt this setting without further optimization. 

Human visual perception tends to be less sensitive to the amplitude change in the 

high-frequency patterns, such as the 2-D DCT basis functions corresponding to the 

high-frequency coefficients shown in Fig. 3.3-(a) [3,131]. Consequently, for a fixed-rate 

budget, these coefficients can bear more quantization noise than the others. To take 

advantage of this property, JPEG has suggested 8 x 8 quantization matrices, obtained 
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Figure 3.3: For each mode of the 8 x 8 DA-PBT, the plots from left to right show 
the basis functions and the magnitude of the corresponding frequency responses of 
the forward transform, and the quantization matrix (luminance). 
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via subjective evaluations as illustrated in the rightmost plot of Fig. 3.3-(a) for the 

luminance component, that can be scaled to determine the quantization stepsizes for 

different coefficients [109]. 

To design the quantization matrices for the eight directional modes of the DA-PBT, 

we propose the following approach. Assume that a quantization matrix for the 8 x 8 

2-D DCT, where the 64 entries in the matrix are denoted by qc G R64, is already-

available and achieves the best visual quality in the reconstruction. The quantization 

matrix suggested in the JPEG standard [109] shown in 3.3-(a) could be used for that 

purpose. Our goal is to choose the quantization matrix for a directional transform, 

represented by q^ G M.64, such that the covariance matrix of the quantization noise in 

the reconstructed block is close to that resulting from the conventional transform. Let 

the random variable x G R64 represent the pixels in a block, and T c and T^ G R64x64 

denote the transform matrix of the conventional and the directional transform re­

spectively such that Tcx and T^x represent the corresponding transform coefficients. 

Additionally, denote the quantization noise in Tcx and T^x by nc and n^ respectively. 

To simplify the problem, we assume fine quantization such that .E[ncn;T] and 

EjridnJ] are diagonal [164,177], i.e., the transform-domain quantization noise is un­

corrected, and the diagonal entries are proportional to the squared value of the corre­

sponding quantization stepsizes. To meet the aforementioned objective, we minimize 

the sum of squared differences between the entries in the two covariance matrices 

of the noise in the reconstruction, i.e., T~1£'[ncn^]T^ r and T^"1 Z?[n<2nJ]T^T, where 

T~T and T^ T denote the transpose of T" 1 and T^"1 respectively. Denote i^Qc) and 

Dzfad) as the diagonal matrices where each diagonal entry is the squared value of the 

corresponding element in qc and q<z respectively, and 

Cc = T ^ Z ^ q J T ^ , Cd = T ^ D 2 ( q d ) T ^ . (3.3) 

Denote the trace of a matrix T by tr(T}, the problem can then be formulated as 

a r g m i n t r ( ( C d - C c ) ( C d - C c ) T ) . (3.4) 
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Since Td is very close to orthonormal as discussed in Sec. 3.1.2, T^Tj « I and 

therefore 

t r ( ( C , - C c ) ( C d - C c ) T ) 

« tr(TdT
T

d(Cd - Ce)(Cd i C c f i y r j ) 

= tr(Td(Cd - C c )TjT d (C d - C c )TTj) 

= i r ( ( D 2 ( q d ) - T d C c T j ) ( D 2 ( q d ) - T d C c T j ) r ) . (3.5) 

From (3.5), the solution of the the original objective (3.4) can be closely approxi­

mated by the square root of the diagonal entries in TdC c Tj . The rounded luminance 

quantization matrices for the directional modes in the 8 x 8 DA-PBT derived from 

the JPEG luminance quantization matrix using this method are shown in Fig. 3.3-(b) 

to Fig. 3.3-(d). The chrominance matrices can be similarly derived from the matrix 

suggested in JPEG [109]. For the 4 x 4 and 16 x 16 transforms, the 8 x 8 matrix in 

JPEG is first downsampled or upsampled to generate the quantization matrices for 

the conventional transform, and those for the directional transforms are then derived 

using the same method. 

3.2 Image Coding with DA-PBT 

3.2.1 Direction Selection 

To encode an image, we divide the image into 16 x 16 macroblocks. Each macroblock 

may contain a single 16 x 16 block or four 8 x 8 blocks, and each 8 x 8 block can 

be further divided into 4 x 4 blocks. Every block is assigned with one of the nine 

modes of the direction-adaptive transform with the same size as the block. When 

blocksize 8 x 8 or 4x4 is selected, a 2 x 2 or 4 x 4 2-D DCT is applied to the DC 

coefficients in the constituent blocks so that only one overall DC coefficient remains 

in a macroblock. Additionally, to exploit the correlation across macroblocks, an extra 

2-D DCT is applied to the DC coefficients in every group of 4 x 4 macroblocks. 

An integer quantization parameter QH.264 from 0 to 51 that can be directly mapped 
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Figure 3.4: The selected blocksizes and modes for a 256 x 256 region of the Pentagon 
image. The blocksizes are indicated by the square blocks, and the directional modes 
are indicated by the additional lines delineating the direction-adaptive block parti­
tions. A square block without further partitions represents the non-directional mode. 
The overhead signaling these selections is coded at 0.04 bpp, around 5% of the total 
rate. 

to a quantization stepsize Q as defined in H.264 is first determined to set the desired 

reconstruction quality [206]. Given Qn.264, for each macroblock the blocksize and the 

modes are selected by minimizing a Lagrangian cost function Dc + \(RC + Rs), simi­

lar to entropy-constrained vector quantization [35] and the rate-distortion optimized 

framework for motion estimation in video coding [82,205]. In the cost function, Dc 

denotes the distortion (sum of squared error) in the reconstructed macroblock, Rc 

and Rs denote the number of bits required to encode the quantization indices and the 

overhead signaling the selection respectively, and A is the Lagrangian multiplier set to 

0.85-2 ( Q H - 2 6 4 _ 1 2 ) / 3 obtained empirically in the context of hybrid video coding [204,205]. 

An example of the selected blocksizes and modes is shown in Fig. 3.4. In our 

experiments, the overhead signaling the blocksizes and the transform modes typically 
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takes about 5% of the total rate for most images. The figure also shows that the 

DA-PBT can be viewed as a,generalization of the variable block-size transforms in 

[207] with the inclusion of non-rectangular partitions and directional transforms. As 

a post-processing step, the blocking artifacts typically observed in block-transform-

based image coding are mitigated by an adaptive deblocking filter modified from 

that proposed for the 4 x 4 blocks in H.264 to accommodate the 8 x 8 and 16 x 16 

blocks [128]. 

3.2.2 Entropy Coding 

To encode the quantization indices, context-based adaptive binary arithmetic coding 

(CABAC) used in H.264 for 4 x 4 blocks is adopted and further extended to handle 

8 x 8 and 16 x 16 blocks [140]. Together with the encoding order illustrated in Fig. 3.1, 

CABAC exploits the common patterns of trailing l's and 0's along the ordered indices 

to improve compression, 

The side information signaling the blocksizes and the modes is also encoded using 

CABAC, similar to encoding the motion information in H.264 [140]. Specifically, one 

symbol for each macroblock indicates if the macroblock is divided into four 8 x 8 

blocks, and another symbol for each 8 x 8 block indicates if it is further divided. To 

encode the mode of a block, one symbol first signals if the selected mode is the non-

directional mode. If this is not the case, we first represent each directional mode by a 

number from 1 for the vertical mode counterclockwise to 8 for the vertical-left mode, 

and also represent the non-directional mode by 0. Additionally, denote the modes 

previously selected for the left, the top, the top-left, and the top-right neighbor of 

the current block, i.e., the blocks in the causal neighborhood, by mi, mt, mti and mtr 

respectively. If any of these neighbors exists and uses a directional mode, the mode of 

the current block is predicted from the neighbors, in modulo-8 arithmetic, and only 

the prediction residual is signaled. Otherwise the mode is signaled directly without 

prediction. To come up with the prediction, denoted by mp, we use the following 

rules. If the left neighbor exists and it has a mode corresponding to a horizontal-ish 

direction, i.e., 4 < TO; < 6 , we select mp — mi because it is likely that a horizontal-ish 
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image feature extends from the left neighbor to the current block. If the condition 

for mi does not hold, similar conditions are evaluated for mtr mti and mtrin order. 

If none of the above conditions holds, we continue with the following rules. If none 

of mi, mt and my is 0, we select mp = mi if mti is closer to mt than torn;, again 

in modulo-8 arithmetic, i.e., the modes are closer between horizontal neighbors than 

vertical neighbors, and mp = mt otherwise. Instead, if any of mi,mt and m« is 0, 

mp '= mi if mi ^ 0, mv — mi if mi = 0 and mt ^ 0, and otherwise the current mode 

is directly signaled without prediction. 

3.2.3 Computational Complexity 

The rate-distortion optimized direction selection process generally requires perform­

ing the transform, quantization, and entropy coding for every mode to evaluate the 

rate and the distortion. Therefore, the computational complexity of image coding 

with DA-PBT at the encoder is approximately nine times that of conventional image 

coding using the 2-D DCT. Note that the decoder complexity is about the same as 

a conventional decoder since only the mode selected at the encoder is performed at 

the decoder. 

To reduce the encoder complexity, one approach is to replace the rate and distor­

tion evaluation with a simpler measurement such as the sum of absolute values (SAV) 

of the transform coefficients. The original Lagrangian cost Dc + X(RC + Rs) becomes 

Sc + y\Rs where Sc denotes the SAV, a simplification often used in video coding 

implementation [204,205]. This simplification bypasses the need for quantization and 

entropy coding of the coefficients for every mode, however, in our experiments, it can 

lead to significant loss in performance. 

Another approach is to examine only a subset of the modes based on the output 

of a simple classifier, analogous to the technique in classified vector quantization [157] 

where one out of multiple codes is selected for an image block based on classification 

of the content instead of testing through all codes as in universal vector quantiza­

tion [67]. In particular, we include in the selection process only the non-directional 

mode and at most one directional mode obtained as follows. For each directional 
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(a) .(b) (c) 

Figure 3.5: Directional zigzag scanning order to estimate the gradient along the (a) 
vertical, (b) diagonal-down-right, and (c) vertical-right direction. 

mode, a directional zigzag scanning order is defined as illustrated in Fig. 3.5 using 

8 x 8 blocks as an example, and the directional gradient is measured as the sum 

of absolute differences between every two consecutive image pixels along the order, 

calculated using simple integer operations. The direction with the smallest gradient 

is referred to as the estimated direction, and the corresponding mode is included in 

the selection process if the following two conditions hold. First, the largest gradient 

exceeds a threshold, e.g., four times the number of pixels in the block, so that the 

block indeed contains significant variations that may be better handled by a direc­

tional transform. Second, at least one of the directions with the second or the third 

smallest gradient is an immediate neighbor to the estimated direction. This condi­

tion suggests that the block contains image features with a single orientation, e.g., 

lines and edges, close to the estimated direction, rather than complex patterns having 

multiple dominant orientations, e.g., corners, that cannot be exploited efficiently by 

the directional transform. By considering at most one additional mode, this approach 

significantly reduces the encoder complexity to less than twice of the complexity of 

a conventional encoder while incurring only a small performance loss, as shall be 

presented in Sec. 3.5. 

3.3 Residual Coding with DA-PBT 

Hybrid coding is a technique widely used in image and video coding [206]. It consists 

of two steps. In the first step, the block to be encoded is predicted by a prediction 
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block generated from the reconstruction of the previously encoded pixels. The recon­

struction requires a decoder loop to be included at the encoder. Hence, this step is 

referred to as closed-loop prediction. Depending on the source of these pixels, there 

are two types of closed-loop prediction: intra prediction, using pixels in the same 

image, and inter prediction, using pixels in other images, e.g., previously encoded 

video frames. In the second step of hybrid coding, the residual block is further decor-

related by transform coding, where block transforms are especially suitable because 

of the block-based prediction. Assuming directional features exist in the block to be 

encoded, for both intra and inter prediction, directionality may still remain in the 

residual block due to limited prediction accuracy. This directionality can be exploited 

by the DA-PBT to improve the overall performance of hybrid coding. 

3.3.1 Intra Prediction 

Directional intra prediction is included in H.264. To encode the current block, a 

prediction block is extrapolated along a certain direction from previously encoded 

pixels. Eight directional modes are defined in H.264 for 4 x 4 blocks, aligned exactly 

to the Stage-1 directions in the DA-PBT, together with a non-directional mode (DC 

mode) where the prediction is simply the average of the surrounding pixels [206]. We 

argue that the directionality in the original block should be close to the direction 

selected for intra prediction, and therefore so is the remaining directionality in the 

residual. Based on this argument, instead of applying a conventional transform to 

the residual, we propose to always apply the DA-PBT using the same mode as intra 

prediction. This method requires no additional search for the transform mode, and 

thus no extra signaling is needed and the computational complexity is approximately 

the same as if the 2-D DCT is always applied. Moreover, DC separation/correction 

can be omitted since the DC energy is typically small in the residual. To further reduce 

the complexity, directional intra prediction and the DA-PBT along the same direction 

can be combined by applying the DA-PBT first and then performing prediction only 

to the Stage-1 DC coefficients (with proper scaling), rather than to all pixels in the 

block. Note that we extend the nine intra prediction modes for 4 x 4 blocks defined 
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in H.264 to 8 x 8 and 16 x 16 blocks to be applied in conjunction with the DA-PBT 

of the corresponding blocksize. 

3.3.2 Inter Prediction 

In most video coding standards, inter prediction is achieved through block-based 

motion-compensated prediction [206]. Analogous to the argument for intra prediction, 

if directional features exist in the block to be encoded, similar directionality generally 

resides in the corresponding prediction block, generated from the previously encoded 

video frames, and possibly also in the residual block. To apply the DA-PBT to the 

inter residual, instead of considering all the modes, the simplifying approach described 

in Sec. 3.2.3 is again adopted. However, instead of measuring the directional gradients 

in the residual block that is to be transformed, the measurement is performed on 

the prediction block based on the assumption that the two blocks possess similar 

directionality if directional features still reside in the residual block. Only if the 

measured gradients satisfy the conditibns in Sec. 3.2.3, suggesting high directionality 

in the prediction block and therefore possibly in the residual, one directional mode of 

the DA-PBT is considered in the direction selection process at the encoder, in addition 

to the non-directional mode. At the decoder, these conditions can be examined 

by performing the same measurement on the prediction block generated during the 

decoding process. Therefore, only if the conditions are satisfied the decoder needs to 

decide whether the non-directional mode or the directional mode has been selected, 

which can be signaled with a binary symbol from the encoder. More importantly, 

without further overhead, the decoder can recover this directional mode as it is the one 

with the smallest measured gradient. When applying the DA-PBT to inter residual 

blocks that already require less rate to encode, this approach greatly reduces the rate 

overhead that can easily nullify the potential gain of the DA-PBT. 
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3.4 Theoretical Analysis of DA-PBT 

3.4.1 Transform Coding Gain 

Similar to the analysis in Sec. 2.3.1, the transform coding gain improvement in 

decibel by the DA-PBT over the conventional 2-D DCT using 8 x 8 blocks, i.e., 

10 • log10
 D£-pBT

; is plotted in Fig. 3.6-(a), and the improvement by the KLT orig­

inally shown in Fig. 2.6 is included again in Fig. 3.6-(b) for reference. The source 

is assumed to be the elliptic random field described with an additional Gaussianity 

assumption as described in Sec. 2.3.1, modeling image textures with different degrees 

of directionality and different orientations. For each set of the source parameters, the 

DA-PBT mode with the highest transform coding gain is adaptively selected. For 

the DA-PBT the slight deviation from orthonormality discussed in Sec. 3.1.2 is ne­

glected such that the definition of the transform coding gain in (2.21) for orthonormal 

transforms is still applicable. In Fig. 3.6, we consider only the elliptic random fields 

oriented from 0° to 90° due to the symmetry between the two sets of the directional 

modes in the DA-PBT. For instance, an elliptic random field with 6 = 45° is aligned 

with the diagonal-down-left mode and 9 = 135° is aligned with the diagonal-down­

right mode, and the two cases result in the same transform coding gain improvement. 

Being the transform that maximizes the coding gain, the improvement by the 

KLT is certainly always larger than that by the DA-PBT. Nevertheless, using only 

a limited number of modes and combinations of simple 1-D transforms, the DA-PBT 

is already able to accomplish certain improvements. In Fig. 3.6-(a), the three peaks 

from left to right correspond to the vertical-left, diagonal-down-left, and horizontal-up 

mode respectively, and the improvement from direction adaptation is larger for sources 

with stronger directionality. Notice that there is no improvement by the DA-PBT for 

sources oriented near 0° and 90°, i.e., the vertical and the horizontal mode are never 

selected over the non-directional mode (2-D DCT). From Fig. 3.1-(3a), the vertical 

mode, for example, essentially contains two 4 x 8 2-D DCTs. From Fig. 3.3-(a) and 

Fig. 3.3-(b), the 64 frequency bands in the 8 x 8 2-D DCT approximately divide each 

of the 32 bands in the 4 x 8 transform into two bands, further reducing the weighted 

geometric mean in (2.21). Therefore, the transform coding gain of the 8 x 8 2-D DCT 
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Figure 3.6: Transform coding gain improvement over the 8 x 8 DCT by (a) the 
8 x 8 DA-PBT, and (b) the 8 x 8 KLT. The source is the elliptic random field with 
Aa = - ln(0.8)/ s , Xb = Xa/kb where kb•= 2, 4, 8, 16, and 32, and 6 from 0° to 90°.. A 
darker line corresponds to a larger kb, i.e., stronger directionality. 

is never smaller than that of the 4 x 8 transform and the vertical mode (and the 

horizontal mode) is never selected in this analysis. 

In practice, the performance gain by the DA-PBT comes from firstly the direc­

tional frequency bands in the transform that increases energy concentration spectrally, 

secondly the partitioning scheme that spatially concentrates energy, and thirdly the 

more efficient encoding order. Only the first factor can be accounted for by the trans­

form coding gain analysis. The second is based on the premise that directional features 

only appear in some partitions, and hence it cannot be evaluated using the stationary 

source model assuming same statistics in the entire block. The third factor cannot be 

captured by the analysis because of the independent coding assumption used in the 

definition of the transform coding gain discussed in Sec. 2.3.1. To overcome some of 

the limitations, we further develop the analysis using linear approximation as to be 

discussed Sec. 3.4.2. 
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3.4.2 Linear Approximation 

Linear approximation measures the MSE distortion in the reconstruction resulting 

from keeping only a fixed set of the transform coefficients and setting others to zero 

[134,196]. In the context of comparing the coding performance of the DA-PBT and 

the 2-D DCT, we consider the fixed set to be the first M coefficients along the encoder 

order defined for each mode of the DA-PBT, and along the zigzag order defined for 

the 2-D DCT. Note that this is different from the nonlinear approximation metric, 

also referred to as the energy packing efficiency in the analysis in [219], that keeps 

the M largest coefficients [134,196]. 

Linear approximation reflects the combined efficiency of both the transform itself 

and the encoding order. This is because an efficient transform concentrates the energy 

into a few coefficients, and these coefficients should be located in the beginning of 

the encoder order so that the magnitude of the coefficients generally decreases along 

the order, a desirable property that can be later exploited by the entropy coder as 

explained in Sec. 3.2.2. 

We denote the distortion for the 2-D DCT by D%CT. Assume that the DA-PBT 

always selects the mode with the best linear approximation, and denote the resulting 

distortion by DpA_PBT. Note that the modes are selected adaptively, and in this 

regard the approximation is no longer linear [134,196]. Nonetheless, in each mode 

the preserved coefficients are always the same, and therefore the approximation in 

this scope is still linear. Using M = 10, the linear approximation improvement 
nM 

by the DA-PBT over the 2-D DCT in decibel, i.e., 10 • log10 nM
DCT is plotted in 

UDA-PBT 

Fig. 3.7-(a). Additionally, the improvement by the KLT is plotted in Fig. 3.7-(b), 

where the M retained coefficients are naturally the ones having the largest variances, 

derived from the source model. Notice that, different from the transform coding gain 

analysis in Fig. 3.6-(a), in Fig. 3.7-(a) the improvements near 0° and 90° from the 

encoding orders of the vertical mode and the horizontal mode are clearly captured 

by the linear approximation analysis, and they follow closely to the case using the 

optimal transform and ordering, i.e., the KLT. The other peaks also indicate that 

significant improvements are enabled by the vertical-left, the diagonal-down-left, and 

the horizontal-up mode of the DA-PBT. 
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(b) KLT over DCT 

Figure 3.7: Linear approximation improvement over the 8 x 8 DCT by (a) the 8 x 8 
DA-PBT, and (b) the 8 x 8 KLT. The source is the elliptic random field with Aa = 
,-ln(0.8)/ s , Xb.= Xa/kh where kb = 2, 4, 8, 16, and 32, and 6 from 0° to 90°. A darker 
line corresponds to a larger kb, i.e., stronger directionality. ' .). 

3.4.3 Rate-Distortion Performance 

Extending from the analysis in Sec. 2.3.2 that models the image-wise rate-distortion 

performance of the 8 x 8 KLT and the 8 X 8 DCT using the proposed image model, in 

this section we further derive the model performance of the 8 x 8 DA-PBT. Note that 

this analysis is intended to model the relative performance of adopting the DA-PBT, 

instead of the KLT or the 2-D DCT, in a general framework for transform coding of 

images. It is not meant to model the absolute performance of the proposed image 

coding system presented in Sec. 3.2. 

As discussed in Sec. 2.3.2, for every mode of the DA-PBT, the model subband 

variances around a block can be derived from the image model. Locally around 

a block, we assume that every subband is coded independently from others, and 

the coding performance achieves the rate-distortion function of Gaussian memoryless 

sources. As a result, numbering the 9 modes of the DA-PBT from m = 0 t o m = 8, 

the local rate-distortion performance around the 6-th block in the image using mode 
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Figure 3.8: Model rate-distortion performance of the 8 x 8 KLT, the 8 x 8 DA-PBT 
and the conventional 8 x 8 DCT. 

m can be expressed as 

63 1 2,(m) 63 

*tn)w = & £ ma*{°> Ilog2 -^-}) D*m)(A) = s £ min<A> ^2;im)}- (3-6) 
s=0 s-0 

where <Jbg denotes the variance of subband s around the 6-th block using mode 

m, and A controls the rate-distortion trade-off. For this block, the adopted DA-PBT 

mode is selected by minimizing the Lagrangian cost Z?j (A) + \Iv™'(A), same as 

the formulation in Sec. 3.2.1 but ignoring the signaling overhead in this theoretical 

analysis, and A = 2 In 2 • A as derived in [185]. Denote the mode selected for the 6-th 

block by m& and the number of blocks in the image by L B , the image-wise performance 
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is then modeled by 

*( A ) '= 7 - £ ^ ^ D ^ = 7 - £ Dtb\V- '.(3,7). 

The model performance of the DA-PBT for the test images shown in Fig. 2.1 is 

plotted in Fig. 3.8, together with the model performance of the KLT and the 2-D 

DCT originally shown in Fig. 2.8. Similar to the transform coding gain analysis in 

Sec. 3.4.1, the model performance of the DA-PBT only captures the improvement 

from the transform itself. The potential gain from the block partitioning scheme 

and the improved encoding order is unaccounted for. Not surprisingly, in Fig. 3.8 

the performance gain from the DA-PBT is limited compared to the maximum gain 

achievable by the KLT. Nonetheless, in Sec. 3.5 we shall'see that for image coding in 

practice, the DA-PBT can indeed deliver significant improvements over the 2-D DCT 

in rate-distortion measurements as well as in perceptive quality. 

3.5 Experimental Results 

The performance of the DA-PBT is reported in this section. In the experimental re­

sults, the adaptive deblocking filter (Sec. 3.2.1) and the simplified search (Sec. 3.2.3) 

are enabled whereas the quantization matrices (Sec. 3.1.3) are disabled unless specif­

ically mentioned. 

3.5.1 Still Image Coding 

We first present results using the 512 x 512 grayscale test images shown in Fig. 2.1. 

The rate-distortion performance of using various block transforms in image coding 

with only 8 x 8 blocks is plotted in Fig. 3.9 including (1) JPEG: baseline JPEG with 

entropy coding defined in [109], without quantization matrices and with the addi­

tional deblocking filter in Sec. 3.2.1, (2) DCT8: the 2-D DCT, (3) DDCT8 in [219], 

(4) DA-BT8: the direction-adaptive transform described in Sec. 3.1.1 without parti­

tioning, (5) DA-PBT8, and (6) DA-PBT8-full: DA-PBT not using the simplified 
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Figure 3.9: Rate-distortion performance of 8 x 8 transforms for image coding. 

search in Sec. 3.2.3, i.e., searching through all nine modes. The rates plotted in the 

figure include the overhead signaling the selected blocksizes and modes. 

From Fig. 3.9, it is clear that DCT8 outperforms JPEG because of the more 

efficient entropy coder (Sec. 3.2.2). DDCT8 only brings limited gain upon DCT8 

whereas DA-BT8 can improve the quality over DCT8 by more than 2dB for images 

rich in directional features, mostly due to the more evenly spaced directions and the 

more sensible scanning orders (Sec. 3.1.1). DA-PBT8 keeps improving the perfor­

mance by spatially confining energy within partitions while inducing less complexity 

(Sec. 3.1.2). Finally, the gap between DA-PBT8-full and DA-PBT8 indicates the 

performance loss due to the simplified search, which is usually negligible considering 

the significant reduction in complexity. 
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Figure 3.10: Rate-distortion performance of variable blocksize transforms for image 
and residual image coding. 

Fig. 3.10 further includes the rate-distortion performance of variable blocksize 

transforms and directional intra prediction. DCT8 again denotes the 8 x 8 2-D 

DCT, DCT and DA-PBT denote the 2-D DCT and DA-PBT with variable block-

sizes (4 x 4, 8 x 8, and 16 x 16) respectively, and IAP(DCT) and IAP(DA-PBT) 

denote directional intra prediction, again with variable blocksizes, together with the 

2-D DCT and the DA-PBT applied to the prediction residual respectively (Sec. 3.3.1). 

From Fig. 3.10, DCT typically provides limited gain over DCT8 except for Monarch 

where the energy in the low-frequency content in the blurred background can be bet­

ter concentrated with larger 16 x 16 blocks. In addition, DA-PBT and IAP (DA-

PBT) outperforms DCT and IAP (DCT) respectively, and the gain generally in­

creases with the number of sharp directional features in the image. The gap between 
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IAP(DA-PBT) and IAP(DCT) is usually smaller than that between DA-PBT 

and DCT. This is because in many cases the residual energy is small so that the 

transform coefficients are all quantized to zero regardless of which transform is ap­

plied, leading to the same rate and distortion. As an extreme example, with perfect 

intra prediction the residual is zero and the transform does not at all affect the coding 

performance. Comparing IAP(DCT) and DA-PBT, directional intra prediction is 

usually more efficient than the directional transforms for being able to utilize the 

correlation across block boundaries. However, compared to the prediction-based ap­

proach, the transform-based approach possesses two main advantages. First, with a 

proper design of entropy coding and bitstream organization, each macroblock (or 4x4 

macroblocks when an additional 4x4 transform is applied as in the proposed approach 

described in Sec. 3.2.1) can be decoded independently from others, providing better 

support for random acqess and error resiliency. Second, both block-wise and image-

wise, the transform is close to orthonormal, allowing embedded (quality-progressive) 

coding of images [170,213]. 

To demonstrate the improvement in visual quality using the DA-PBT, a 256 x 256 

region of Pentagon is shown in Fig. 3.13-(a), and the corresponding reconstructions 

from DCT, DA-PBT, IAP(DCT) and IAP(DA-PBT) using the same quanti­

zation stepsize are shown in Fig. 3.13-(b)-(e). The DA-PBT, applied both to the 

image and to the intra residual, greatly reduces the ringing and checkerboard arti­

facts around edges observed in the DCT-based schemes while demanding less rate. 

DCT with a rate comparable to that in IAP (DA-PBT) (Fig. 3.13(e)) is shown 

in Fig. 3.13(f), demonstrating the advantages of exploiting directionality in the im­

ages for image compression, both in the prediction and in the transform. Similar 

observations can be made for Monarch as shown in Fig. 3.14. 

3.5.2 Video Coding 

To evaluate the performance of the DA-PBT for video coding, we implemented a video 

coder that divides the video frames into I-pictures and P-pictures, and the i6 x 16 

macroblocks in these pictures are categorized into three modes, INTRA, INTER, and 
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Foreman CIF Carphone CIF 

rate (Mbps) rate (Mbps) 

Figure 3.11: Rate-distortion performance of using the 2-D DCT and the DA-PBT for 
video coding with all I-pictures. 

SKIP, similar to those defined in H.264 [206]. The macroblocks in the I-pictures 

are all in the INTRA mode and are encoded using either IAP (DCT) or IAP (DA-

PBT) as described above for regular images. For the P-pictures, each macroblock 

can be in one of the three modes. The INTRA macroblocks are again encoded by 

IAP (DCT) or IAP (DA-PBT). The INTER macroblocks are first predicted with 

motion-compensated inter prediction using 4 x 4, 8 x 8, or 16 x 16 blocks, and the 

residual blocks are encoded using either the 2-D DCT or the DA-PBT, denoted by 

IRP(DCT) and IRP(DA-PBT) respectively. A SKIP macroblock directly copies 

a macroblock from the reconstruction of the previous frame using motion compen­

sation with a motion vector derived from the causal neighborhood [206]. Motion-

compensated inter prediction is realized similarly to H.264 with quarter-pel accuracy 

and a search range of ±32 x ±32 pixels. To quantize the transform coefficients, the 

quantization parameter <5H.264 (Sec. 3.2.1) for the P-pictures is set to be one more 

than that for the I-pictures, and the parameter A (Sec. 3.1.3) is set to | for INTRA 

and | for INTER macroblocks [202]. The quantization indices and the overhead sig­

naling all the mode and blocksize selections are encoded using CABAC-like entropy 

coding as discussed in Sec. 3.2.2, whereas the motion vectors are first predicted from 

causal neighborhoods and then encoded using a fixed variable-length-coding table. 

We consider two coding arrangements: all I-pictures and one I-picture in every 15 
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Figure 3.12: Rate-distortion performance of using the 2-D DGT and the DA-PBT for 
video coding with one I-picture followed by 14 P-pictures. 

frames. The performance of the corresponding baseline method using the 2-D DCT 

is denoted by IAP(DCT) in Fig. 3.11 and IAP(DGT) + I R P ( D C T ) in Fig. 3.12 

respectively for the CIF sequences Foreman and Carphone. To benchmark the im­

plemented baseline methods, the rate-distortion performance of the H.264 reference 

software JM 13.2 is also included, denoted by JM 13.2 115 in Fig. 3.11 and JM 

13.2 IP14 in Fig. 3.12 for the two arrangements respectively, using the High Profile 

(FRExt) that additionally enables 8 x 8 intra prediction and transforms [111, 141]. 

From Fig. 3.12, at high rates I A P ( D C T ) + I R P ( D C T ) is evidently less efficient 

than J M 13.2 IP 14 due to several simplifications in our implementation. For in­

stance, the High Profile in H.264 allows the 4 x 4 or the 8 x 8 transform to be selected 

adaptively in INTER macroblocks [141], whereas in our implementation the size of 

the transform is coupled to the blocksize used in motion-compensated prediction. 

Nonetheless, the implemented coder in general delivers performance comparable to 

the state-of-the-art video coding standard. 

For using all I-pictures, compared to IAP(DCT), IAP (DA-PBT) on average 

improves the reconstruction quality by 0.51 dB for Foreman and 0.66 dB for Car­

phone, and, equivalently, reduces the rate by 9.0% and 10.5% respectively as shown 

in Fig. 3.11. Furthermore, instead of using the same mode for the DA-PBT and 

directional intra prediction, the performance of considering all of the nine DA-PBT 
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modes regardless the intra prediction mode selected is also included in the figure, 

denoted by IAP(DA-PBT)-full. The performance loss from using the same mode 

is generally acceptable considering the additional computation required to evaluate 

the rate and distortion associated with all the other DA-PBT modes. 

For the arrangement with inter prediction, the DA-PBT can be applied to the 

INTRA macroblocks, denoted by IAP(DA-PBT) + I R P ( D C T ) , or additionally to 

the INTER macroblocks, denoted by IAP(DA-PBT) + IRP(DA-PBT) in Fig. 3.12. 

As discussed in Sec. 3.3.2, IRP (DA-PBT) considers at most one directional mode 

of the DA-PBT. The scheme that enables all nine modes of the DA-PBT to be se­

lected for both the intra and the inter residual blocks is denoted by IAP(DA-PBT)-

full + IRP(DA-PBT)-full and is also included in the figure. Although in Fig. 3.11 

IAP(DA-PBT)-full outperforms IAP (DA-PBT), considering all DA-PBT modes 

for the inter residual as in IAP(DA-PBT)-full + IRP(DA-PBT)-full surprisingly 

deteriorates the performance. Despite the additional flexibility, IAP(DA-PBT)-

full + IRP(DA-PBT)-full no longer achieves better rate-distortion performance 

than IAP (DA-PBT) + IRP (DA-PBT) because of the increased overhead for the 

INTER macroblocks that offsets the potential gain (Sec. 3.3.2). On average, com­

pared to IAP(DCT) + I R P ( D C T ) , IAP (DA-PBT) + IRP (DA-PBT) improves 

the quality by 0.22 dB for Foreman and 0.27 dB for Carphone, and equivalently re­

duces the rate by 5.5% and 6.6% respectively. Similar to comparing the effectiveness 

of the DA-PBT on image blocks and intra residual blocks, the DA-PBT is less effec­

tive on inter than intra residual since inter prediction is typically more accurate and 

leads to smaller residual energy. This contradicts the observation in [219] where the 

DDCT is more effective on inter residual blocks rather than on image blocks. We 

conjecture that this is due to the less accurate motion compensation adopted in [219] 

that always uses 16 x 16 blocks and a search range of mere ±7 x ±7 pixels. 

3.6 Summary 

We have proposed a new direction-adaptive partitioned block transform (DA-PBT) 

for coding of images and video sequences. The DA-PBT outperforms the conventional 
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2-D DCT by more than 2dB for images with pronounced directional features. Since 

it avoids the typical ringing and checkerboard artifacts of the 2-D DCT, subjective 

improvements are even larger than indicated by the rate-distortion performance. The 

DA-PBT also outperforms a previously proposed directional DCT while demanding 

less computation, owing to an improved directional selectivity, direction-adaptive 

partitioning and better coefficient ordering for entropy coding. As for conventional 

block transforms, the DA-PBT achieves its best performance when combined with 

adaptive blocksizes. To exploit the frequency response of the human visual system, 

quantization matrices can be used with the DA-PBT. We show a straightforward 

way to transform JPEG quantization matrices into the directional transform space, 

thus avoiding cumbersome subjective tests. 

We have also explored the combination of the DA-PBT with predictive coding, 

either directional prediction within the image or interframe prediction for video. For 

intraframe directional prediction, the direction selection for the prediction and the 

transform can be elegantly combined. It is not surprising that the gains of both 

techniques are not additive, as similar signal properties are exploited by the predic­

tion and the transform. Since the DA-PBT operates in a block-wise manner, the 

incorporation into block-based motion-compensated video coding is straightforward. 

Alas, we have not been able to demonstrate significant gains by compressing the 

motion-compensated prediction residual with the DA-PBT when advanced motion 

compensation is used for our relatively simple test sequences. The DA-PBT might 

still have a role to play for video coding, at least for intra-coded blocks, or where 

motion-compensated prediction is not fully effective. 
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(a) original (b) DCT (0.28 bpp, 28.88 dB) 

I 

(c) DA-PBT (0.27bpp, 29.18dB) (d) IAP(DCT) (0.26bpp, 28.96dB) 

(e) IAP(DA-PBT) (0.25 bpp, 29.31 dB) (f) DCT (0.25 bpp, 28.52dB) 

Figure 3.13: Reconstruction of a 256 x 256 region in the Pentagon image. 
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Figure 3.14: Reconstruction of a 256 x 256 region in the Monarch image. 



Chapter 4 

Direction-Adaptive 

Discrete Wavelet Transform 

In the previous chapter, we have shown that the DA-PBT, as a block transform, can be 

easily combined with block-based predictive coding widely adopted in image and video 

coding techniques. However, due to the block-wise operation, the transform is unable 

to exploit the correlation across blocks.; Moreover, at lower rates, the reconstruction 

exhibits severe blocking artifacts, requiring additional deblocking filtering to partially 

mitigate them. Alternatively, image coding with the wavelet transform applied over 

the entire image is free of blocking artifacts and often leads to better performance both 

in rate-distortion measurements and in visual quality. In this chapter, we propose 

a direction-adaptive transform based on the wavelet transform, referred to as the 

direction-adaptive discrete wavelet transform (DA-DWT). For image coding, the 

best mode of the DA-DWT is selected at the encoder for each image block using a 

rate-distortion optimized framework and signaled to the decoder as side information. 

In Sec. 4.1, we describe how different modes of the DA-DWT are constructed 

using directional lifting. A practical image coding framework using the DA-DWT is 

discussed in Sec. 4.2. Theoretical analysis of the DA-DWT and performance evalu­

ation using the image model proposed in Chap. 2 are presented in Sec. 4.3. Finally, 

experimental results demonstrating the superior performance of the DA-DWT both 

objectively and subjectively are included in Sec. 4.4. 

76 
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4.1 Construction of DA-DWT 

4.1.1 2-D DWT with Lifting 

The conventional 2-D DWT in general consists of two stages. In Stage 1, the anal­

ysis filters of the 1-D DWT are applied to the image vertically followed by vertical 

subsampling to obtain the low-pass subband, L, and the high-pass subband, H. In 

the second stage, the analysis filters axe again applied to L and H horizontally, fol­

lowed by horizontal subsampling to obtain the LL and LH in Stage 2-L, and the HL 

and HH subband in Stage 2-H respectively. It is shown in [179] that any two-band 

biorthogonal DWT can be factored into pairs of lifting steps. We limit the discussion 

to wavelet transforms that can be realized with one pair of the lifting steps, i.e., one 

prediction step followed by one update step. For instance, the Haar wavelet and the 

family of interpolating wavelets all belong to this category [16,47]. 

Let s = {s[l] | 1 G n } , where 1 = (lx,ly)
T and s[l] = s[lx,ly], denote a set of 

image samples on a 2-D orthogonal sampling grid II = {(lx, ly)
T G Z2}. The grid TI 

is composed of 4 sub-grids: Hpq = {(lx, ly)
T G II \ ly mod 2 = p, lx mod 2 = q}. 

To apply the 2-D DWT with lifting, we first apply a Stage-1 transform between the 

even and the odd rows of the image, i.e., between so = {s[lo] j lo G n 0 = n0o U n 0 i } 

and Si = {s[lij | li G IIi = IIio U I l n } . Denote the resulting low-pass subband by 

w0 = {wo[lo] I lo G n 0 } and the high-pass subband by wx = {wi[li] | li G TIi}, the 

lifting steps can generally be expressed as 

w1[\1]^gH-(s[h]-Pll(so)),y heU,, (4.1a) 

WoPo] = 9L • {s[k] + 9~H • ^io(wi)), V lo G n 0 , (4.1b) 

where the prediction function, Px^), and the update function, Ui6(-), are functions 

of the sample values in the input with a scalar output, and gL and gx are scaling 

factors. The Stage-1 transform is realized by first performing the prediction step in 

(4.1a) followed by the update step in (4.1b) so that s is decomposed into w0 and wi." 

To reconstruct s from w0 and wi, the inverse transform can also be realized by the 
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following lifting steps: 

s[lo].=.ffr1-ti;o[Io]-</H1-^a(wi), V lo-GlIo, • ' (4.2a) 

s[ll}=g^-w1[l1) + Ph(So), V l i e n ! . -(4.2b) 

Using the lifting steps, the prediction function Pi^-) and the update function U\0(-) 

can be space-varying or even nonlinear without affecting the reversibility of the trans­

form as shown in (4.1) and (4.2). This property has been utilized to design locally 

adaptive transforms for image coding [13, 26,30,40,53,79, 80,182, 201], video cod­

ing [133,152,168], and light field compression [31,32,83]. 

Similarly, the transform between the even and the odd columns of the samples 

further decomposes w0 in Stage 2-L into w0o and w0i, defined on n0o and n 0 i 

respectively, and decomposes wi in Stage 2-H into w10 and w u , defined on n 1 0 and 

I In respectively, where w0o, w0i, Wi0, and wu correspond to the LL, LH, HL, and 

HH subband of the image respectively. We refer to this process of decomposing the 

image samples s into the 4 subbands as one level of the 2-D DWT. Multiple levels of 

the transform may be performed by iteratively applying this process to the resulting 

LL subband. 

4.1.2 Directional Lifting 

In the conventional 2-D DWT, the prediction and the update function in (4.1) can 

be expressed as 

Kp-l 

fii(so)= J2 cPtk-s[lltX,h>y-(2k+l)}, (4.3a) 
k=-KP 

Ku-1 

,xi ^0,y (2* + l)], (4.3b) 
k=-Kv 

where KP, cptk, Ku, and cu,k are determined by the wavelet kernel adopted. For 

instance, for the popular 5/3 filter pair [42, 77], Kp = 1 with Cp;_i = CPIQ = §, 

Ku = 1 with cu-\ = cu,o = \, and gL and gn are customarily set to \/2 and -4 
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respectively [47,179]. Note that only samples in the same column are involved in the 

transform. 

For image compression, for each sample in the high-pass sub-band, ioi[li], it is gen­

erally desirable to select a prediction function -Pî So) in (4.1a) that predicts s[li] from 

the samples in s0 such that the energy in the residual w\ [1J is minimized and most 

energy is concentrated in the corresponding low-pass subband w0[lo]- In the proposed 

DA-DWT, we define directional prediction filters with direction d = ((4,dy)T from 

which P^ (so) can be adaptively selected as 

Kp-l 

P\M= J2 cP<k-s[h-(2k+l)d], (4.4) 
k=-KP 

where d is defined such that 

. i i - (2fc + l ) d € l I o , V h eUu k = -KP,--- ,KP-1. (4.5) 

The directional prediction filter corresponds to performing the prediction step along a 

Stage-1 direction d. From (4.5), d £ Z 2 and dy is always odd. We further constrain d 

such that the line segment from (0,0)T to (dx, dy)
T does not intersect with any other 

point in II, i.e., dx and dy are coprime integers. For instance, the following directions 

are used in our previous work in [26]: ( -3 , l ) r , ( -2,1)T , ( -1,1)T , (-1,3)T , (0,1)T, 

( l ,3 ) r , (1,1)T, (2, I f , and (3,1)T. 

Denote the direction selected at location lx for Pi^So) as d^. Upon completion 

of the prediction step of all samples, the corresponding update function in (4.1b) is 

defined as 

Ku-l 

Oio.(wi)= E cUik- J2 w^- (4-6) 
k=-Kv {h | li-(2fe+l)dfi=l0} 

In words, wherever an image sample s[li] is predicted by cp^ • s[lo], S[IQ] is updated by 

cu,k-wi[h]- Note that if direction (0,1)T is always selected, i.e., dj^ = (0, l ) r V li, (4.4) 

and (4.6) are equivalent to the functions in (4.3) and directional lifting is identical to 
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the conventional DWT. 

For the second stage of the transform further applied to w0 and Wi, the transform 

is applied along a Stage-2 direction, d = (dx, dy)
T, where dx and dy are again coprime 

integers, and dx is odd and dy is even. Consequently, 

loi - (2A; + l)d € n 0 0 , In - (2k + l)d e n 1 0 , (4.7) 

v i0i e n0i, in € n n , k = -KP, • • •, KP - 1 . 

The resulting candidates for the prediction function and the corresponding update 

function are. denned similarly as in (4.4) and (4.6). Note that the direction selected 

for Stage 2-L and Stage 2-H can be different in general. 

Several other approaches in the literature that also enable directional adaptation 

through lifting essentially adopt a set of sub-pel directions achieved by spatial interpo­

lation, e.g., d = {(£, 1)T, i = ^K, ••• , K}, where K is typically 2 or 4 [53,182,201]. 

These approaches assume dy = 1 (and dx = 1) whereas the proposed DA-DWT frame­

work only requires dy (and dx) to be odd. In the experimental results as well as the 

mathematical analysis reported in [26], we have shown that using integer samples, 

e.g., (—1,3)T, directly for prediction is typically more efficient than using the inter­

polated ones, e.g., (—|, 1)T, in the presence of sharp image features. Additionally, 

the integer directions do not involve sub-pel interpolation, and hence require less 

computation. 

Furthermore, in the sub-pel approaches only the directions between ±45° from 

the vertical axis are considered in Stage 1. For horizontal-ish image features, there 

is no closely aligned filtering directions and thus the energy is spread into the high-

pass subband H. As a result, for image compression they favor vertical-ish image 

features, and therefore are sensitive to image transposition. In our previous work [30], 

quincunx subsampling was adopted to provide directions covering the 2-D space more 

evenly and has shown reduced sensitivity to image transposition. However, DWT 

coding using quincunx subsampling is less efficient for typical images [87]. In the 

proposed DA-DWT, we retain the conventional orthogonal subsampling as described 

in Sec. 4.1.1 and allow integer directions beyond ±45°, e.g., (—2,1)T, to provide a 
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(a) (b) 

Figure 4.1: (a) The direction-pairs in the 9 modes of the DA-DWT. The solid lines 
denote the Stage-1 directions d, and the dashed lines denote the Stage-2 directions 
d. (b) The impulse responses of the analysis filters of one level of the DA-DWT using 
the 5/3 filter pair. In each mode, the four plots correspond to the (top-left) LL, 
(top-right) LH, (bottom-left) HL, and (bottom-right) HH subband. 

larger directional span, instead of using the limited set of sub-pel directions. Similar to 

the case with quincunx subsampling, reduced sensitivity to transposition is observed. 

The mathematical analysis in [26] also agrees with this observation. 

4.1.3 Direction Pairing 

To apply the DA-DWT to an image region, in general three directions need to be 

determined in Stage 1, Stage 2-L, and Stage 2-H of the transform as described in our 

previous work [26]. In practice, these directions are usually aligned with the image 

features so that the energy in the high-pass subband is minimized. Consequently, 
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Figure 4.2: The frequency responses of the 2-D analysis filters of one level of the 
DA-DWT using (a) the 5/3 filter pair, and (b) the sine wavelet. In each mode, the 
four plots correspond to the (top-left) LL, (top-right) LH, (bottom-left) HL, and 
(bottom-right) HH subband. Each plot represents the 2-D discrete-space frequency 
—-K <Clx<n from left to right and — n < Qy < TT from bottom to top. 

corresponding Stage-1 and Stage-2 directions are usually selected. For instance, the 

pair of d = (0,1)T for Stage 1 and d = (—1,2)T for Stage 2-L and 2-H is likely to be 

selected if vertical-ish features appear in the region. 

We identify 8 such pairs that cover a variety of feature orientations, and they 

constitute the 8 directional modes of the DA-DWT shown in Fig. 4.1-(a) (Mode 

1~8) together with Mode 0 that falls back to the conventional 2-D DWT. Different 

modes are adaptively selected according to the image features contained in local image 

regions. Additionally, the impulse response of the resulting 2-D analysis filters of one 

level of the DA-DWT using the 5/3 filter pair are shown in Fig. 4.1-(b). Different 

from the filters in the conventional 2-D DWT (Mode 0), the directional modes use 
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elongated and oriented 2-D filters that are realized by cascading simple 1-D lifting 

steps. The corresponding frequency responses of the DA-DWT using the 5/3 filter 

pair are shown in Fig. 4.2-(a). If a hypothetical sine wavelet that requires an infinite 

support is used, i.e., KP. = oo with cptk = s i n c ( ^ ' ) , Ku••= oo with cu,k = \cP,k, 

and gL = V% and <7H = -75 in (4.3), the resulting frequency responses are shown 

in Fig. 4.2-(b). Using the sine wavelet, the 2-D frequency space is partitioned by 

the DA-DWT into 4 directional subbands. With the practical 5/3 filter pair, the 

subbands overlap but still retain the desired directional supports. 

Note that we only include directions with a maximal displacement of 2 in each 

dimension, i.e., \dx\, \dy\, \dx\, \dy\ < 2. This ensures that the size of the filter support 

does not increase much from the conventional 2-D DWT in order to reduce the ringing 

artifacts at low rates. The number of modes can be increased to handle more feature 

orientations. Nonetheless, through experiments we found that using more than the 

proposed eight directional modes provides only limited gain for typical images. 

4.2 Image Coding with DA-DWT 

4.2.1 Direction Selection 

For image coding, the DA-DWT modes selected at the encoder need to be signaled to 

the decoder so that the transform can be properly reversed to reconstruct the image 

samples. The modes should be selected to minimize the distortion of the reconstructed 

image for a given rate budget. The rate budget is spent on the overhead required 

to signal the selection and the rate for coding the wavelet coefficients. To reduce 

the amount of the signaling overhead, the modes are selected in a block-wise fashion. 

Finding the best DA-DWT modes is therefore analogous to rate-constrained block-

based motion estimation in video coding [82,204,205]. 

Assume L levels of the DA-DWT are to be applied to an image to decompose 

the image into 3L + 1 subbands. We divide the image into macroblocks of SB X SB 

pixels. Each macroblock may contain a single SB X SB block, or be further divided 

into blocks of f x S B ^ B x f . f x f . f x SB, ^ x ^ . ^ x ^ f X ^ , or 
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4 x 4 pixels. Every block is assigned one of the nine modes of the DA-DWT. 

Ideally, for each macroblock the best blocksize and the mode in each block are 

selected as the blocksize and mode combination that minimizes a Lagrangian cost 

function Dc + X(RC + Rs), the same as for the DA-PBT discussed in Sec. 3.2.1. In 

this cost function, Dc denotes the distortion (sum of squared error) in the recon­

structed macroblock, Rc and Rs denote the number of bits required to encode the 

transform coefficients and the overhead signaling the selection respectively, and A is 

the Lagrangian multiplier set to 0.85-2(QH-264~12)/3 where QH.264 depends on the target 

quality and can be mapped into a quantization stepsize as denned in H.264 [206]. 

Different from the DA-PBT, the DA-DWT (or DWT in general) is not a block 

transform and filtering in the prediction and the update step extends across block 

boundaries. Therefore, the transform coefficients in the current block depends not 

only on the mode selected for the block, but also on the modes in all of the neighboring 

blocks, making it impossible to evaluate the distortion and rate without knowing the 

modes in the subsequent blocks. Furthermore, entropy coders designed for non-block-

transforms such as the DWT may not necessarily work in a block-by-block manner. 

Evaluating the rate for encoding the coefficients in a block can thus be difficult. As a 

simplification, we first approximate the transform coefficients in the current block for 

a certain mode by applying the DA-DWT assuming that the same mode is selected 

in all the involved neighboring blocks. Additionally, instead of using DC+X(RC + RS), 

the cost function Sc + vXRs, where Sc is the sum of absolute values of all the wavelet 

coefficients in the macroblock, is adopted as it has been shown to be an effective 

alternative in rate-constrained motion estimation [204,205]. 

Once the blocksize and the corresponding modes have been selected for every 

macroblock, the actual transform coefficients of the entire image are generated by first 

performing the prediction step in the Stage-1 transform as described in (4.1a) and 

(4.4) with the selected locally varying directions. Upon completion of the prediction 

step for all the samples, the update step in the Stage-1 transform is performed as in 

(4.1b) and (4.6), followed by the lifting steps in the Stage-2 transforms. The process 

is iteratively applied to the resulting low-resolution LL subband to achieve multiple 

levels of the transform. Note that because filtering extends across block boundaries, 
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unlike the DA-PBT, blocking artifacts are usually absent in the reconstructed images 

and therefore deblocking filters are not needed. 

In the above discussion, we consider the case where the L levels of the DA-DWT 

share the same blocksize and mode selection. In general, at different resolution levels 

of the transform, the macroblock-size and the selected blocksizes and modes can all 

be different, requiring a separate selection procedure at each level of the transform as 

in [26,53]. This may be beneficial for high-frequency periodic patterns in the image 

such as fine stripes, since at different levels the patterns may appear having different 

orientations due to the aliasing from downsampling. Nevertheless, we observed that 

for most image features it is sufficient to select the same mode across resolution levels 

because the feature orientations are usually resolution-invariant. 

At block boundaries, using the Stage-1 transform for example, a sample at 10 € n 0 

may be used to predict samples in III in more than one directions. This happens 

when, for instance, n({li | li +,df = lo}) > 1, where n(A) denotes the cardinality of 

set A, analogous to the situation of multiply-connected pixels in video coding with 

motion-compensated temporal filtering [145]. Meticulous rules have been developed 

to cope with this situation in order to make adaptive transforms reversible, both for 

video coding [145] and image coding [151,200]. Owing to the lifting structure, the 

proposed DA-DWT does not require these rules and reversibility of the transform is 

always ensured as shown in (4.1) and (4.2). 

The situation of multiply-connected pixels also incurs ambiguity in the direction 

of the update step. The update functions we propose in (4.6), analogous to the 

barbell lifting scheme for video coding [210,211], has been shown to achieve better 

compression performance than the update functions in [52,53] and [30], analogous to 

using the reversed motion vectors in the update step [210]. The discussion in Sec. 4.1.2 

is limited to wavelet kernels that can be realized using one pair of the lifting steps. For 

kernels that can only be constructed with multiple pairs of lifting steps, such as the 

9/7 filter pair [47,179], a more complicated update scheme is required to improve rate-

distortion efficiency and reduce coding artifacts around block boundaries, as studied 

in [129]. 

All the aforementioned update schemes applied at block boundaries are based 
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Figure 4.3: The selected blocksizes and the DA-DWT modes for the 512 x 512 image 
Monarch. Each macroblock contains 64 x 64 pixels. The Stage-1 directions d for the 
selected modes are shown on the left, and the Stage-2 directions d are shown on the 
right. In this example, the Lagrangian multiplier A is determined by QH.264 — 34, 
corresponding to a quantization stepsize of 32. The resulting overhead signaling 
these selections is coded at 0.005 bpp, and the rate to encode the coefficients with 
this quantization stepsize is 0.28 bpp with a reconstruction quality at 32.32 dB. 

on heuristics and are hence in general suboptimal. The optimal update functions 

require rather intensive computation and therefore are not adopted in practice [84,85]. 

Consequently, although using smaller blocks for direction selection may provide better 

adaptation to the image content, the increased number of samples at block boundaries 

and the accompanied suboptimal update functions might on the contrary lead to a 

higher distortion. For this reason, in the DA-DWT we typically use macroblocks of 

64 x 64 pixels, larger than the 16 x 16 macroblocks used in the DA-PBT as discussed 

in Sec. 3.2.1. An example of the selected blocksizes and modes are shown in Fig. 4.3. 

i 

4.2.2 Entropy Coding 

Perhaps the most important motivation to use wavelet image coding is to obtain 

an embedded image representation, typically achieved by coding the transform coeffi­

cients with an embedded bitplane coder [166,171,183]. At the encoder, the coefficients 
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are coded bitplane by bitplane at high precision; the decoder can either retrieve the 

full bitstream to recover all the bitplahes encoded and hence a high-quality recon­

struction, or only decode partial bitplanes, at a lower rate, to reconstruct at a reduced 

quality. This property is especially useful for progressive transmission of images over 

networks. 

Since the DA-DWT coefficients can be arranged in the same way as the corre­

sponding 2-D DWT coefficients, as they share the same number of subbands and the 

same number of coefficients in each subband, any embedded bitplane coder designed 

for the 2-D DWT may be used for the DA-DWT. In our implementation, we adopt 

the TCE coder for its open accessibility and superior performance [74,173,186]. 

To enable an embedded representation, the decoding rate, hence the decoding 

quality, is not known a priori at the encoder. To select the blocksizes and the 

DA-DWT modes, the choice of the Lagrangian multiplier A as described in the pre­

vious section, however, must anticipate a certain decoding quality. On one hand, if 

the anticipated quality at the encoder is higher than the actual one, the resulting A is 

smaller than the ideal value, leading to an unnecessarily detailed direction representa­

tion and an excessive signaling overhead. On the other hand, if the anticipated quality 

is lower, the consequent selections may not fulfill the full potential of the DA-DWT. 

As a compromise, we generally select QH.264 = 34, corresponding to a quantization 

stepsize of 32, for the choice of A, as this usually leads to a reconstruction around 30 

to 32 dB and below 0.4 bpp for typical images, where the visual improvements from 

the DA-DWT is most prominent, as we shall demonstrate in Sec. 4.4. 

To encode the direction representation, for each block a 1-bit symbol is used 

to indicate whether Mode 0 is selected. If this is not the case, the selected mode 

is predicted from the blocks in the causal neighborhood, similar to the prediction 

mechanism described in Sec. 3.2.2, and the residual is coded using variable-length 

coding with a fixed codeword table. Additionally, if all the blocks in the causal 

neighborhood have selected Mode 0, the current selection is coded directly without 

prediction. For each macroblock, the selected blocksize is also coded with variable-

length coding. 

In the scope of our discussion, we consider only lossless coding of the selections. 
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The entirety of the signaling overhead is always transmitted to the decoder regardless 

of the decoding rate. At lower decoding rates, the overhead can take a significant 

portion of the total rate available, leaving limited rate for the transform coefficients. 

In [216], we have developed an approach to allow lossy coding of the selections in 

order to provide an embedded direction representation, analogous to the embedded 

representation of motion vectors in video coding [169,212]. With this approach, the 

decoder is able to retrieve a coarser direction presentation, at a lower signaling rate, 

if the total decoding rate budget is limited. 

4.2.3 Computational Complexity 

To implement the DA-DWT, a straightforward method is to first carry out each of 

the 9 modes for the whole image and record the sum of absolute values of the re­

sulting wavelet coefficients in every ^f- x ^f- block, the smallest blocksize adopted in 

the framework. Once the sum of absolute values are available, the direction selection 

process can be performed entirely based on these values. Last, the actual transform is 

applied using the selected blocksizes and modes to generate the final coefficients. As 

a result, 10 iterations of the wavelet transform are performed at the encoder. Assum­

ing that, in a conventional wavelet-based image encoder, the transform contributes 

to around 50% of the total computation as reported in [1] for JPEG2000, an adap­

tive encoder based on the DA-DWT thus requires 5 to 6 times the computation as a 

conventional encoder. Although not included in our implementation, the complexity 

may be reduced by the approach described in Sec. 3.2.3 proposed for the DA-PBT. 

The approach first performs simple image analysis locally to identify the local di­

rectionality so that at most one directional mode, in addition to the conventional 

transform, is applied to every block. This can cut down the encoder complexity to 

less than twice the computation as a conventional encoder. Note that the decoder 

complexity is about the same as a conventional decoder since only the mode selected 

at the encoder is performed at the decoder. 
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4.3 Theoretical Analysis of DA-DWT 

In this section, we provide theoretical analysis of the performance gain resulting from 

adapting the wavelet filtering directions. We first relate the frequency responses of the 

directional filters in the lifting steps with the underlying wavelet kernel. Using these 

frequency responses, the power spectral density (PSD) of the high-pass and the low-

pass subbands is then related to the PSD of the image samples. The transform coding 

gain is then analyzed to quantify the performance gain against the conventional 2-D 

DWT. 

4.3.1 Directional Filtering in Lifting 

As described in Sec. 4.1, to apply the 2-D DWT to image samples s[l], 1 = (lx, ly)
T € 

Z2, using lifting, s[l] is first vertically subsampled into the even rows, s0[l] = s[lx, 2ly], 

and the odd rows, si[l] = s[lx, 2/^ + 1]. Similar to (4.1), the prediction and the update 

step in lifting can be expressed as 

w1[l]=gH-(s1[\]-hj>[l}*So[l}), 

Wl] = 5L • (*o[l] W • (4M Wl])), 

where WQ[1] and wi[\] denote the high-pass and the low-pass coefficients respectively, 

h$[l] and hy[l] denote the 2-D impulse response of the directional filters in the lift­

ing steps along direction d = (dx,dy)
T, the symbol * denotes the 2-D convolution 

operation, and gi, and gn are scaling factors. In the following discussion, functions 

denoted by an upper-case letter in the form of A(e?n) = A(e^nx, e^v) represent 

the 2-D discrete-space Fourier transform of the corresponding discrete-space signal 

d[l] = a[lx,ly\. We start the analysis by deriving Hp(ejn) and Hy(e?n).as functions 

of the filtering direction d and the adopted wavelet kernel., 

To facilitate the analysis, we define so[l] as the upsampled SQ[\], i.e., 

so[lx,-ly/2], ly is even, 

0, ly is odd. 

(4.8a) 

(4.8b) 

S0[l] = S0[lx,ly] = 



w. 
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Following the discussion in Sec. 4.1.2, we further define the 2-D directional prediction 

filters applied to So[l] by the impulse response hP[l], 

\ 0, otherwise, 

where Kp and cptk are determined by the wavelet kernel adopted. In the conventional 

DWT, A.p°[l], d0 = (0,1)T, is always used, corresponding to vertical filtering with the 

prototype 1-D prediction filter, hp[t], defined as 

hp[t] = hP°[0,t], teZ. (4.11) 

Denote the 1-D discrete-space Fourier transform of hp[t] by Hp(e:'at). We continue 

the analysis by relating HP(e^n) with HP{e^t). As defined in Sec. 4.1.2, dx and dy 

are coprime, i.e., their greatest common divisor is 1. From Bezout's identity [108], 

there is at least one direction, d = (dx, dy)
T G Z2, such that 

dxdy - dydx = 1. (4.12) 

Therefore, a generator matrix defined as 

W=( d_x dx) (4.13) 
\dy dy J 

is a one-to-one mapping from Z2 to Z2 [81], i.e., 

{ 1' | 1' = Wl, V 1 G Z2}.= Z2. (4.14) 

With W, hP[l] can be related to hd
P

0[l} by 

hP[Wl] = hP°[l], hP[l] = h^lW-H] (4.15) 

From (4.12), (4.13), and the fact that dx and dy are coprime, one can verify that 

(4.15) is consistent with the definition in (4.10). 
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Figure 4.4: H${e?n) in (4.18) using the sine wavelet. Each plot represents the 2-D 
discrete-space frequency — ir < Qx < n from left to right, and — TT < Qy < TT from 
bottom to top. Light gray and dark gray represent 1 and —1 respectively. 

From (4.10) and (4.11),Tip0[1] = S[lx] • hP[ly], and it is straightforward that 

Hd°{eja) = HP(ejQy). (4.16) 

Moreover, from (4.14), (4.15), and (4.16), 

. J ^ ( e * ° ) = ^ > J [ l ^ n T l ' = ^ ^ [ W - 1 l ^ ^ r ' 1 ' (4.17) 

. l'ez2 l'ez2 

= £ hd
P°[\}e-^Twi = Hp(e^Tn) = HP(e^Tu). 

As an example, using the sine wavelet introduced in Sec. 4.1.3, 

Hp-(ejil) 

Hd(e^) 

1, qd(Clx,Cly) is even, 

—1, qd{Clx, Qy) is odd, 

| ^ ( e j n ) , 

(4.18) 

(4.19) 

where qd(£lx, fly) = l(dxfi,x + dytty + | ) / n \ and [ J denotes the floor function. Plots 

of Hp(ejn) for the Stage-1 directions included in the 9 modes of the DA-DWT are 

shown in Fig. 4.4. 

In the following derivation, we establish the relationship between the frequency 

response of the filter in (4.8a), Hd(ejCl), with the equivalent filter in the upsampled 

domain in (4.10), H$(e?n). From (4.8) and (4.10), convolving Tip[1] with s0[l] is 

equivalent to convolving /iP[l] with s0[i\ followed by a 1-pixel vertical advance and 
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vertical downsampling, i.e., 

{h$*so)[l] = (h$*s0)[lx,2ly + l}. (4.20) 

Hence, 

H*(ejU) • S0(e
jil) =\ J^ H${^,ej{^+k^) • ej^+kn) • S0(e

jn*,eji^+kn)). (4.21) 
fc=o 

From (4.9), 

So(ejQ) = S0(e
jn*,ej2ny). (4.22) 

In addition, from the fact that dy is always an odd integer and (4.10), hf>[\] = 

h!p[lx, ly] = 0 if ly is even. Since e~^kirly = (—l)ly if k is an odd integer, 

lyezixez 

= -Hf,(ejQ*,e:Kav+k7r)), Vk: his odd. (4.23) 

Combining (4.21), (4.22) and (4.23), we obtain 

H$(ejS1) = \ J2(-l)kej^~H$(eja*, ej^+kn)) = e?^~H*(ejU*, e>%. (4.24) 

Finally, combining (4.17) and (4.24), we obtain 

H$(eja)^€i^'Hp(ei^dxnx+dy~2-)). (4.25) 

With a similar derivation, the frequency response of the filter in (4.8b), H^(ePu), can 

be obtained as 

H${e>n) = e~J7fHu(e
i{d'nx+d"~2')), (4.26) 
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where Hu(e^at) is the frequency response of the prototype 1-D update filter. 

4.3.2 Coefficient Power Spectral Density 

Assume s[l] is a stationary 2-D discrete-space random field. Denote the 2-D discrete-

space autocorrelation function of sjl] by i?ss[Al] = £J{s[l+Al]s*[l]} where s*[l] denotes 

the complex conjugate of s[l], and s[l] is real so that s*[l] = s[l]. The 2-D discrete-

space PSD of s[l] is denoted by $ss(eJ 'n) (with the shorthand notation <&ss). Since 

so[l] and si[l] are vertical subsamples of s[l] with different phases, 

RSoSo[Al] = RSlSl[A\\ = Rss[Alx,2Aly], ' (4.27) 

RS0Sl[Al] = Rss[Alx,2Aly-l}. (4.28) 

Therefore, 

$S0S0(e^) = $S l S l (e^) = | ^ $ s s ( e ^ % e ^ + f c 7 r ) ) , (4.29) 
fe=0 

C(c*n) = JB-l)V4*M(e^,^ V)); (4.30) 
fc=0 

From (4.8), (4.25), (4.26), and the property that $ss(eJ 'n) is real, the PSD of the 

high-pass and the low-pass subbands when wavelet filtering is applied along direction 

d, denoted by $£ lWl and ^oWo respectively, can be expressed as 

< W l = ^ - ( ( l + l ^ p | 2 ) ^ o S o - 2 ^ S o S l ) , J (4.31) 

KWo=d-^-H^H^ + \H^)^SoSo+2(l-H^H$)H^SQSl). (4.32) 

Note that Hf,$SoSl, H$HJ>, and Hfr$SQSl are all real. 

4.3.3 Transform Coding Gain 

The derivation in Sec. 4.3.1 and Sec. 4.3.2 relates the PSD of the two subbands re­

sulting from Stage 1 of the DA-DWT to the PSD of the source image pixels. It is 
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Figure 4.5: Transform coding gain improvement from 3 levels of the DA-DWT upon 
the conventional 2-D DWT using (a) the 5/3 filter pair, and (h) the sine wavelet. 
The source PSD is generated assuming elliptic random fields with A0 = — ln(0.8)/s, 
\ — ^a/kb where kb = 2,4,8,16,32, and 6 from 0° to 90°. A darker line corresponds 
to a larger kb, i.e., stronger directionality. 

straightforward'to extend the derivation to Stage 2 of the DA-DWT as well as multi­

ple levels of the transform so that the PSD of any subband can be derived recursively 

from the source PSD, given the selected mode in each level and the underlying wavelet 

kernel. The variance in the subband can then be computed by averaging the corre­

sponding PSD over — n < flx < TT and — TT < Qy < w numerically, and the calculation 

of the transform coding gain defined in Sec. 3.4.1 follows. 

The transform coding gain improvement from the DA-DWT upon the conventional 

2-D DWT in decibel (dB), i.e., 10 • log10
 GI>G~™T , is plotted in Fig. 4.5 assuming the 

source is the Gaussian elliptic random field described in Sec. 2.3.1, using both the 5/3 

filter pair and the sine wavelet. Note that although the formulation in (2.21) is only 
i 

applicable to orthonormal transforms, it can be extended to biorthbgonal transforms, 

such as the 5/3 filter pair, by considering the energy expansion factors in wavelet 

synthesis [185]. Nevertheless, this additional consideration can be excluded in our 

calculation since we are only interested in the coding gain ratio between two trans­

forms adopting the same wavelet kernel, hence sharing the same energy expansion 

factors. We assume three levels of the transforms are applied to the source, and 



CHAPTER 4. DA-DWT 95 

the DA-DWT always selects the mode with the highest transform coding gain. In 

Fig. 4.5, we consider only the elliptic random fields oriented from 0° to 90° due to 

the symmetry between Mode 1-4 and Mode 5-8 of the DA-DWT (Fig. 4.1-(a)). 

In Fig. 4.5, as expected, the DA-DWT leads to a larger improvement for sources 

with stronger directionality. The peaks around 30° and 45° in Fig. 4.5-(a) come from 

Mode 2 and Mode 3 respectively, and the peak at 63° and its symmetric counterpart 

around 27° are contributed by Mode 4 and Mode 1 respectively. For further illustra­

tion, the PSD of two examples of the elliptic random fields are shown in Fig. 4.6. In 

Fig. 4.7, these PSDs are filtered by the 2-D analysis filters of one level of the DA-DWT 

using the 5/3 filter pair, whose frequency responses are shown in Fig. 4.2-(a). The 

intensity in the plots of the filtered PSD directly indicates the energy contained in 

each subband. For the example in Fig. 4.6-(a) and Fig. 4.7-(a), most energy is cap­

tured in the LL subband in Mode 3. Therefore, Mode 3 is selected as it gives the 

best energy concentration and hence the highest transform coding gain. Similarly, 

Mode 4 is selected in Fig. 4.7-(b) for the example in Fig. 4.6-(b). Note that the 

aliasing components in Fig. 4.6-(b) due to undersampling of sharp image textures are 

aligned with the passband of the LL subband in Mode 4 as shown in Fig. 4.2. Hence, 

compared to other modes, in Mode 4 even the energy in the aliasing components is 

concentrated in the LL subband, resulting in a higher transform coding gain. 

Comparing Fig. 4.5-(a) and Fig. 4.5-(b), a larger improvement is observed when 

the 5/3 filter pair is adopted due to the overlapping subbands. In the conventional 

transform (Mode 0) using the 5/3 filter pair, the source energy residing in the over­

lapping regions is leaked into multiple subbands, hampering energy concentration. 

With a properly selected directional mode, most energy is contained in the interior of 

one subband, further away from the overlapping regions. This significantly reduces 

the energy leakage problem and thus further improves energy concentration. Using 

the sine wavelet, the subbands do not overlap and therefore the directional modes do 

not benefit from this improvement. 
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(a) Xa = - ln(0.8)/s, Xb = Aa/8, 9 = 45° (b) Aa = - ln(0.8)/s, A6 = Aa/32, 9 = 63° 

Figure 4.6: The PSD of two examples of the elliptic random field in logarithmic scale. 

(a) Mode 3 selected (b) Mode 4 selected 

Figure 4.7: The PSD examples in Fig. 4.6 filtered by the 2-D analysis filters of the 9 
DA-DWT modes using the 5/3 filter pair. Mode 3 and Mode 4 are selected for (a) 
and (b) respectively as they lead to the highest transform coding gain. 

4.3.4 Rate-Distortion Performance 

Extending the analysis in Sec. 2.3.2 that models the image-wise rate-distortion per­

formance of the 8 x 8 KLT and the 8 x 8 DCT using the proposed statistical image 

model, in this section we derive the model performance of the DA-DWT. We assume 
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Figure 4.8: Model rate-distortion performance of the DA-DWT and the conventional 
2-D DWT using the sine wavelet and the 5/3 filter pair. 

three levels of the DA-DWT are applied to the image, followed by an additional level 

of the conventional 2-D DWT to further decompose the resulting low-pass subband, 

same as in the actual experiments to be discussed in Sec. 4.4. 

As explained in Sec. 2.3.2 and in the beginning of Sec. 4.3.3, for every mode of 

the DA-PWT, the model subband variances around a block can be derived from 

the image model. Locally around a block, we assume that every subband is coded 

independently from others, and the coding performance is ideal in the sense that it 

achieves the rate-distortion function of Gaussian memoryless sources. As a result, 

the local rate-distortion performance around the 6-th block in the image using mode 
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m can be expressed as 

S-l " 1 2,(m) 

.^m ) (A) = ^ » 7 . m a x { O i - l o g 2 - ^ - l l . (4.33) 
, s=0 

s - i . • 

^m)(A) = E^ m M A ,^ m ) } ' 
s=0 

where S denotes the number of subbands and 5" = 13 for the 4-level transform, c6's 

denotes the variance of subband s around the fe-th block using mode m, rjb denotes 

the ratio between the number of coefficients in subband b and the total number of 

coefficients, and A controls the rate-distortion trade-off. For this block, the mode of 

the DA-DWT is selected by minimizing £>Jm) (A) + 2 In 2 • Ai^m)(A) as for the DA-PBT 

explained in Sec. 3.4.3. Denote the mode selected for the 6-th block by m^ and the 

number of blocks in the image by LB, the image-wise performance is then 

^A) = T- E Am\xii D(x) = i- E P ^ W . • (4-34) 
LB U LB ^o 

plotted in Fig. 4.8 for the images shown in Fig. 2.1 using both the 5/3 filter pair and 

the sine wavelet. The model performance of 4 levels of the conventional 2-DDWT, 

which can also be expressed by (4.34) with m& = 0 for every block, is included for 

reference. • .s 

For the 5/3 filter pair, at the same rate the DA-DWT outperforms the 2-D DWT 

by up to around 4dB for Spoke, l dB for Monarch, 1.2 dB for Pentagon and 0.7 dB 

for Lena. Clearly, the DA-DWT delivers more improvements over the 2-D DWT 

for images containing more directional textures. The model performance gain closely 

follows the actual gain obtained by experiments, and this will be discussed in Sec. 4.4. 

In Fig. 4.8, for the sine wavelet that requires an infinite support, the improvement by 

the DA-DWT over the 2-D DWT is less than that for the 5/3 filter pair, consistent 

with the transform coding gain analysis in Sec. 4.3.3. For Spoke and Pentagon, the 

performance of the DA-DWT using the 5/3 filter pair matches that of the 2-D DWT 

using the sine wavelet. This suggests that instead of using a complicated kernel 
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Figure 4.9: 512 x 512 8-bit grayscale image (a) Barbara and (b) Mandrill 

that may require more computation, varying the filtering direction of a simple kernel 

according to the image content can be a better alternative. 

4.4 Experimental Results 

In the experimental results reported in.this section, in addition to the test images 

shown in Fig. 2.1, we further include the two images in Fig. 4.9. Three levels of the 

DA-DWT are first applied to the image, followed by one additional level of the con­

ventional 2-D DWT to further decompose the resulting low-pass subband. The three 

levels of the DA-DWT share the same set of direction selections, and the macroblock-

size is set to 64 x 64 pixels as discussed in Sec. 4.2.1. The 5/3 filter pair is adopted for 

its simplicity and also for providing a direct comparison with the model performance 

in Fig. 4.8. The DA-DWT can also be applied with other wavelet kernels such as the 

(6,6) interpolating wavelet and the 9/7 filter pair as described in [26,53,129]. 

The compression performance of the DA-DWT for the test images is shown in 

Fig. 4.10. In addition, the performance of four levels of the conventional 2-D DWT, 

equivalent to always selecting Mode 0 in the DA-DWT, is also shown for comparison. 

For both transforms, the coefficients are encoded by the TCE embedded bitplane 

coder proposed in [186] as described in Sec. 4.2.2. The wavelet transforms, together 

with bitplane coding, provide an embedded image representation such that different 

decoding qualities are obtained by truncating the single bitstream from the encoder 

at different rates. To choose the Lagrangian multiplier A for direction selection, 
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Figure 4.10: Rate-distortion performance of the DA-DWT and the conventional 2-D 
DWT using the 5/3 filter pair. 
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we always use QH.264 = 34, equivalent to a target quantization stepsize of 32, as 

explained in Sec. 4.2.2. The decoding rate and distortion obtained by decoding the 

embedded bitstream up to the bitplane corresponding to this quantization stepsize is 

indicated by the circular marker on each DA-DWT curve in Fig. 4.10, usually taking 

place around 30 to 32 dB and below 0.4 bpp where the improvement in visual quality 

using the DA-DWT is most prominent as we shall demonstrate in Fig. 4.11, Fig. 4.12 

and Fig. 4.13. The resulting signaling overhead ranges from 0.005 bpp (Monarch) to 

0.01 bpp (Mandrill), and this rate is included in the rate calculation in Fig. 4.10. 

Comparing the model performance in Fig. 4.8 with the actual performance in 

Fig. 4.10, at the same rate the model reconstruction quality is typically higher than 

the actual one by 2 to 4dB. This is mainly due to the assumptions in the analysis in 

Sec. 4.3.4 that local statistics of the subband coefficients are known and the perfor­

mance of coefficient coding is ideal. Although the practical TCE bitplane coder we 

adopted exploits the correlation across subbands to some extent [186], an advantage 

over the independent coding assumption also included in the analysis, its performance 

can still be far from the analytical coding scheme. In particular, the performance dif­

ference is most significant for Spoke, with an average around 4dB, due to the highly 

varying local statistics between the foreground spoke and the background that are 

difficult to estimate for the adopted practical coder. Nevertheless, the main purpose 

of the analysis is to quantify the performance gain from the DA-DWT over the 2-D 

DWT in a general transform coding framework, and the actual gain, i.e., the gap 

between the two curves in Fig. 4.10, is indeed closely captured by the analysis. 

As discussed in Sec. 1.2, the non-adaptive directional transforms in the literature 

such as the steerable pyramid [75,174], the complex wavelet transform [70,114], the 

ridgelet transform [17,61], the curvelet transform [65,178] and the contourlet trans­

form [62] have shown certain improvement over the non-directional 2-D DWT in terms 

of nonlinear approximation performance. However, none has reported rate-distortion 

coding improvement for typical test images. Unlike the non-adaptive directional 

transforms, from Fig. 4.10, the DA-DWT outperforms the 2-D DWT by up to 5.1 dB 

at the same rate for Spoke, 1.4 dB for Monarch, 1.2 dB for Pentagon, 1.0 dB for Lena, 

2.1 dB for Barbara and 0.6 dB for Mandrill. In addition to the natural images in the 
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test set, significant gain of more than 2dB is also observed for fingerprint images, as 

well as medical images where sharp edges occur at the boundary between the object 

of interest and the background. In general, the performance gain is larger for images 

rich of features with large intensity transition in one direction and small variation 

in the orthogonal direction, again consistent with the transform coding gain analysis 

presented in Sec. 4.3.3. 

For each test image, two 128 x 128 regions reconstructed at 0.05, 0.1, 0.2, 0.3, 

0.4 and 0.5 bpp are included in Fig. 4.11, Fig. 4.12 and Fig. 4.13 to demonstrate the 

difference in visual quality between the DA-DWT and the 2-D DWT. In general, at 

lower rates the reconstruction from the DA-DWT exhibits brushstroke-like artifacts 

along image features. Different from the typical checkerboard artifacts resulting from 

the conventional transform, for instance as in the reconstructed Spoke and Monarch 

in Fig. 4.11, the brushstroke artifacts follow the geometric flow in the image, best 

observed at the stripes in Barbara and the hair in Mandrill in Fig. 4.13, and there­

fore better preserve the geometric structure. Hence, at low rates the DA-DWT can 

readily delineate the image content, making it a superior candidate for progressive 

transmission of images, where a low-quality preview is first reconstructed and, as 

more data are received, refined to achieve higher qualities. 

4.5 Summary 

We have proposed a new direction-adaptive discrete wavelet transform (DA-DWT) 

for image coding. The DA-DWT provides an efficient representation for directional 

image features such as edges and lines. Using a lifting structure, the DA-DWT is 

able to locally adapt the transform directions to the image content while ensuring 

the reversibility of the transform. In our experiments, the DA-DWT outperforms 

the conventional 2-D DWT by around 1 to 2dB in PSNR for typical test images, 

and by up to 5.1 dB for special classes of images, consistent with the performance 

improvement derived from theoretical analysis using an image model. 

Although the transform directions are selected on a block-by-block basis, filtering 
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extends across block boundaries so that blocking artifacts are absent in the reconstruc­

tion. At low rates, the reconstruction error of the DA-DWT exhibits brushstroke-like 

artifacts. Different from the ringing and checkerboard artifacts typically observed in 

the conventional transform, the brushstroke artifacts better preserve the geometric 

structure in the image. The ability to better depict the image content at low rates, 

together with embedded coding of the coefficients, makes the DA-DWT especially 

suitable for progressive transmission of images. 
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Figure 4.11: Each group of 12 plots corresponds to a 128 x 128 region in Spoke and 
Monarch. In each group, the reconstructions from the conventional 2-D DWT and 
the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row 
respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 bpp from left to right. 
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Figure 4.12: Each group of 12 plots corresponds to a 128 x 128 region in Pentagon 
and Lena. In each group, the reconstructions from the conventional 2-D DWT and 
the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row 
respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 bpp from left to right. 
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Figure 4.13: Each group of 12 plots corresponds to a 128 x 128 region in Barbara 
and Mandrill. In each group, the reconstructions from the conventional 2-D DWT 
and the DA-DWT using the 5/3 filter pair are shown at the top and the bottom row 
respectively, decoded at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5bpp from left to right. 
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Conclusions 

In this dissertation, two new direction-adaptive transforms are proposed to improve 

the compression efficiency of practical image coding systems: the direction-adaptive 

partitioned block transform (DA-PBT) and the direction-adaptive discrete wavelet 

transform (DA-DWT), together with a novel image model that facilitates theoretical 

analysis of the coding performance. The direction-adaptive transforms adapt the 

selection of basis functions according to local directionality in images to efficiently 

represent directional image features such as edges and lines. Both new transforms are 

shown to be superior candidates for image coding to their non-adaptive counterparts. 

The image model represents an image by a mixture of texture sources to cope 

with locally varying statistics. Each texture source is a 2-D stationary random field 

composed of an irregular and a regular texture component, characterized by the ellip­

tic random field and the periodic-wave random field respectively. Using the texture 

sources, any image neighborhood centered in a particular image block is modeled 

as a segment of a realization of the texture source associated with the block, mixed 

with additive white noise and normalized by the local variance and the local mean 

around the block. For a given image, an iterative clustering algorithm is proposed 

to optimize the parameters of the texture sources, the association between the image 

blocks and the texture sources, and the white-noise level in each block. Using the 

model, theoretical analysis shows that using an adaptive transform consisting of the 

107 
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KLTs derived from the texture sources instead of a fixed transform offers more im­

provement in terms of transform coding gain for textures with stronger directionality. 

The analysis also indicates that a substantial gain in rate-distortion performance can 

be expected around sharp directional features, rendered by the directional bases of 

the adaptive transform aligned with the image features. 

To provide directional bases for a practical transform, the DA-PBT is proposed for 

coding of images and video sequences. The DA-PBT outperforms the conventional 

2-D DCT by more than 2dB in PSNR for images with pronounced directional fea­

tures. Since it avoids the typical ringing and checkerboard artifacts of the 2-D DCT, 

subjective improvements are even larger than indicated by the rate-distortion perfor­

mance. The DA-PBT also outperforms a previously proposed directional DGT while 

demanding less computation, owing to an improved directional selectivity, direction-

adaptive partitioning and better coefficient ordering for entropy coding. To exploit 

the frequency response of the human visual system, quantization matrices can be used 

with the DA-PBT. We show a straightforward way to transform JPEG quantization 

matrices into the directional transform space, thus avoiding cumbersome subjective 

tests. The DA-PBT can also be combined with predictive coding, either directional 

prediction within the image, where the direction selection for the prediction and the 

transform can be elegantly combined, or interframe prediction for video. It is not 

surprising that the gains of both techniques are not additive, as similar signal prop­

erties are exploited by the prediction and the transform. Nevertheless, performance 

improvements are still observed. 

For the DA-PBT, one of the advantages of being a block transform is that it 

can be conveniently combined with block-based predictive coding widely adopted in 

image and video coding standards. However, the block-wise operation is incapable 

of exploiting the correlation across block boundaries, and additionally, at low rates, 

results in blocking artifacts in the reconstruction. The DA-DWT proposed for trans­

form coding of still images does not have these drawbacks. Using the lifting structure, 

the DA-DWT is able to locally adapt the transform directions to the image content 

while ensuring the reversibility of the transform. Although the transform directions 

are selected on a block-by-block basis, filtering extends across block boundaries so 
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that inter-block correlation is exploited and blocking artifacts are absent in the re­

construction. In our experiments, the DA-DWT outperforms the conventional 2-D 

DWT by around 1 to 2dB for typical test images, and by up to 5.1 dB for spe­

cial classes of images, consistent with the performance improvement derived from 

theoretical analysis using the image model. At low rates, the reconstruction error 

of the DA-DWT exhibits brushstroke-like artifacts. Different from the ringing and 

checkerboard artifacts typically observed in the conventional transform, the brush­

stroke artifacts better preserve the geometric structure in the image. The ability to 

better depict the image content at low rates, together with embedded coding of the 

coefficients, makes the DA-DWT especially suitable for progressive transmission of 

images. 
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