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Abstract—The coding of arbitrarily shaped images and video must be discarded. These computational requirements were
has become an increasingly important problem, but the design |ater reduced by Philips t0(b/?m) operations and(v/bm)
of simple and efficient transforms with arbitrary spatial support storage [4], still for the special case of monomials.

remains difficult. Fixed-size transforms, such as theV x N DCT, . . . .
however, are mature and well understé)od. We propose a simfole Sikora and Makai prqpose the SA-DCT algorlt'hm.[Z]. This
padding framework that allows a fixed-size unitary transform Mmoves the samples inside the shape to the beginning of each
such as the DCT to be used without modification over arbitrary row and applies aV;-point DCT to each row, wherd/; is the
regions. We develop seyeral algorithlms inside this framework, number of samples in row The process is then repeated on
g?é“'i’:?)rr?];Ef:t}bﬁgﬁ;d:frf‘it(':%r?t”e;unpig% agg\r/z?]f;‘éé)“gfmeitg‘;ﬂz columns. The order can reversed, processing columns first and
hardware, and impose Nno additional overhead on the decoder. th€n rows, which welds different results. Further mo@ﬁcaﬂons
ensure the transform is orthogonal and DC preserving [5], [6].

Index Terms— Arbitrary spatial support, shape-adaptive DCT, The _SA'DCT requires an |mp!ement§itlon of a D.CT for every
padding. possible row size, and can distort signal statistics by mixing
coefficients of different frequencies in the column transforms.
This last will be discussed in more detail later.

Strashski and Konrad developed a method for converting
HAPE ADAPTIVE transforms are required for object-any orthogonal transform into a shape-adaptive transform [3].
based video compression, where separate objects irH@wvever, their algorithm must choose between four differ-

scene are coded individually, along with a description defininght options at each butterfly step in the transform. When
their shape. This preserves sharp edges between objects Wi{plementing this in hardware, it requires extra silicon to
out introducing ringing and provides additional funCtiOna”tYmmement all four options, yielding a complexity the authors
that frame-based video compression cannot. However, everelimate to be about twice that of a normal DCT. A software
the frame-based case, encoding a rectangular image whiclhiglementation requires conditional branches, which can be
not a multiple of the block size in a block-based codec require@ry expensive on modern genera| purpose processors if mis-
special handling of the partial blocks. predicted due to their long pipelines.

I. INTRODUCTION

A. Shape Adaptive Transforms B. Shape Adaptive Padding

One class of solutions to the arbitrary shape problem isA flexible cl f hes is t tandard
to design a family of transforms that can be applied to eve kn:ore feX| N chass fwap%og%$§ Isth N duse(;i stan dar
conceivable shape. These include methods developed by G%ﬁc ransform such as XN In the decoder, an
et al, Sikora and Makai, and Strésiki and Konrad [1]-[3]. simply d|scarq all the pixels outside of the region of support.
They are typically characterized by equal complexity in th‘ghe encoder is then free to pad the block with any values that

encoder and decoder, a complexity greater than that of {ﬁgke the resulting transform coefficients easier to compress.
unmodifiedN' x N DCT. is allows the encoder to make the trade-off between good

I%ompression and computational complexity according to its
functions over a rectangular region, restricts them to tﬁgquirements, and allows the decoder to use a single optimized

support region of the current shape, and then uses a Gri nsform for all blocks, taking advantage of any standard

Schmidt procedure to re-orthogonalize them [1]. This requir grdware implementations.

both large storage and high computational complexity, butTEe ;m_lpflk?st.chmce .Of patdﬁ'ngr:s to E[Jse adconstant value
provides very good compression. such as0. This is experimentally shown to produce poor re-

The original method uses monomiafs’ as basis functions sults [7]. However, it may still_be us_eful for inter frame_zs, where
and require)(b%m) operations and)(bm) storage, wheré the e>_<pected valge of the_ res_lt_jual is small_[8]. Techniques such
is the number of basis functions computed ands the size as mirror extension are intuitively appealm_g, bu'.{ are hard to
of the region. At low bitrated can be small, but at highergener"’“!Ze to non-convex shapes and can yle!d d|ffer(_ant results
ones it might be larger tham, as some of the Computeddependmg on whether rows or columns are mirrored first. They

basis functions are linearly dependent on the previous ones do not take_ full advantage of the signal statistics vv_hen
only a few padding values need to be added, as only pixels

This work was undertaken for the Xiph.org Foundation. near the edge of the shape are mirrored.
0000-0000/00$00.0®) 2005 IEEE

Gilge et al's method starts with an orthogonal set of bas
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The method adopted by MPEG-4 TMNL11 initializes theestricted to the non-padding region. Although the process can
padding with a constant value and then iteratively runs a smalien be repeated on columns, Stetral. report better energy
low-pass filter over the padding region [8]. On the edge of tlmpaction by only adding padding where an entire row is
padding region, the support of the filter contains non-paddizgro, even though this may result in more thannon-zero
pixels, which helps reduce the sharp discontinuities introducedefficients.
by using a constant value alone. Again, the full signal statisticsLike the SA-DCT, the algorithm may operate on columns
are not used, as only the edge pixels—those most likely fiest, with different results. Shert al. compress each frame
contain outliers from a segmentation algorithm—contribute twith both orders, and keep the one with the best rate-distortion
the padding values. This approach reduces the magnitudecbéracteristics. Also like the SA-DCT, the re-arrangements
high-frequency coefficients, but there may be more non-zetan distort signal statistics, which likely explains the im-
coefficients in the transformed block than there were pixels provement from limiting the shape-adaptiveness of the column
the original shape. transforms. Finally, this method requires modification to the

Several approaches have been proposed which attemptiégoder to read the order of row and column transforms
force one coefficient to zero for each padding pixel addefiom the bitstream and to restore the pixels to their original
producing a critically sampled transform. This amounts tacations. We wish the decoder to be agnostic to the padding
selecting a subset of the full transform’s basis functions amgechanism used, to retain the flexibility of the encoder to
solving a linear system for the padding values that will forcehoose whatever method meets its requirements.
all other basis functions to zero.

Kaup and Aach propose a method that selects the basis I
functions by successive approximation [9]. The basis is built
up by adding at each step the one function that reduces th&Ve develop a new set of shape-adaptive padding algorithms
residual error by the |argest amount, Stopping when the tot}ﬂsed on the technique of selecting a subset of the available
error reaches a threshold. In order to evaluate the residual eR8pis functions of a complet® x NN unitary transform. The
at each iteration, the coefficients of the selected basis functidhgsis is that, since zeros are easy to compress, we will in-
are obtained by solving a system of Gaussian normal eq@&ease compression efficiency by forcing as many coefficients
tions. This can be done using the Cholesky decompositic¥s possible to zero. By choosing a subset that is linearly
which can be constructed by adding one row at a time as tiiglependent over the support region and critically sampled, the
basis grows. Thus the cost of a single Cholesky decompositid@sis vectors selected uniquely determine the padding values
is amortized across the entire process. However, this stiiquired to force the remaining coefficients to zero. Although
requires time and space similar to that of the unoptimizdflis goal is easy to express and design algorithms for, its
version of Gilgeet al’s method. This is acceptable wherPptimality in the rate-distortion sense is currently unknown.
encoding still images, for which the algorithm was originally
designed, but is too expensive for video.

Chenet al. propose an iterative method based on the theory .
of Projection Onto Convex Sets (POCS) [10]. Initial padding -
values are chosen with some simple method, and a forward
DCT is applied to the entire block. The most significant low-
frequency coefficients of the result are kept, and the rest are set
to zero. An inverse DCT is applied, and the result is used as

padding values for the next iteration, after replacing the non- e
padding pixels with their original values. The process stops
mented in hardware instead. The difficulty with this method

X

. PADDING FRAMEWORK

after some small number of iterations, or if the reconstruction
fails to improve.

This method avoids solving a linear system by using stan-
dard transforms which may be heavily optimized or imple-

is that convergence is only guaranteed if the same coefficients

are zeroed in every iteration, and there is no guarantee that the

non-zero coefficients selected in the first iteration even corre-

spond to linearly independent basis functions when restricted

to the support region. Fig. 1. Representing 4 x 4 region as a column vector. Dark pixels belong
Shenet al. propose a technique of re-arranging each row the support region, while white pixels are padding.

so that padding pixels can be interleaved at fixed locations,

chosen based on the number of non-padding pixels in theThis section describes the formal framework in which

row [11]. Then a small linear system can be solved to force thieese methods are developed. We begin with some notation.

highest frequency coefficients of a 1-D DCT applied to eacbonsider a unitary matrixG of sizen x n, wheren = N2

row to zero. The choice of padding pixel locations ensures thltat is,y = Gx describes a complete 2-D transform, such as

the firstV; DCT basis functions are linearly independent whethe DCT. The input values are arranged in a single column-
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vectorx in row-major order (see Figure 1), as are the outpshapes chosen only by the number of pixels in each row (or
valuesy. alternatively each column).

Let P be a permutation matrix applied to the input vector  Our approach gives us the flexibility to choose a different
such that it can be partitioned into a non-padding paof size set of basis functions for every potential shape. Thus, a shape
m < n and a padding par of sizen —m, i.e.,, Px = [}]. with two pixels adjacent to each other is not treated the same
Now let Q be a permutation matrix applied to the output vectaas a shape with pixels on opposite ends of the block. We
y such that it can be partitioned inte potentially non-zero do not move distant, uncorrelated pixels close to each other,
coefficientsu’ andn — m coefficientsv’ that will be forced nor do we move neighboring, closely correlated pixels apart.
to zero. That isQy = [3;]. Now, let G = QGP~! be the Thus we can take full advantage of the underlying statistical

permuted transform, and partiti&® into blocksA, B, C, and assumptions of the image.

D as follows: Our approach does allow some high frequency coefficients
u A Bl [u to be non-zero, but these are expected to remain small, as in
v T |Cc D||v @) the full transform case. Although low-frequency coefficients

do not form long zero runs as often, forcing them to zero can

The shape, which is given as input, determiRe§ he effect still be very beneficial, as they are more likely to have a large
on the transfornG is to partition its columns, as illustrated inmagnitude which can take many bits to encode.
Figure 2 for the same example shape used in Figure 1. We usgollowing equation (1), we can express the transform coef-
a row-transform in this particular example because its blockcients as
diagonal shape makes it easier to see how rows and columns .
are moved around. In general, a complete 2-D transform which u = Au+ Bv 2
iSs non-zero everywhere is used. v/ =Cu+ Dv 3)

Substituting0 for v’ in equation (3) and solving fov yields:
v=-D"!'Cu (4)

We delay the question of whether or Mt ! exists for a brief
moment. Substituting (4) into (2) gives an expression for the
non-zero coefficients’ in terms of the non-padding pixels
only:

u = (A -BD !C)u (5)

. , The familiar expression in front ofi is the Schur com-
Fig. 2. The effect ofP~! on a row-transformG. The dark blocks contain

the non-zero coefficients, and the shaded columns correspond to the supB!ﬁlm.en_t Oij which we denoteSp. It appears in the block
region of the shape. matrix inversion formula:

, , A BT [ sp ~SpBD! 5
The ba5|s functlo_ns_ we select to havg non-zero coefﬁment%c D} = l:_D_lcS]—Dl D-1+D-'CSpBD-! (6)
determineQ, and this is what we wish to identify. Its effect on
the transform is to partition the rows, as illustrated in Figure But since our transform is unitary, we know th@t* = G7,
In general, the ordering within each partition is unimportandnd soSp = A~7. This demonstrates tha¥ is invertible so
S0 any two permutation matric&andP’ or Q andQ’ which long asD is invertible. A similar argument with the Schur
effect the same partitioning are equivalent. complement ofA proves the converse.

Thus we wish to partition the truncated basis functions
into two groups|[&] in such a way thatA is invertible,
and AT has good energy compaction properties. Since the
column vectors in[é] are orthogonal, it must always have

Q full rank. Hence there must also be linearly independent
— rows, ensuring at least one invertibfe exists.

A complete padding algorithm in this framework is com-
posed of two stages: selecting a set of basis functions and
then padding so as to force the remaining coefficients to zero.
Section Ill presents several solutions to the basis selection

Fig. 3. The effect ofQ on GP~*. The dark blocks contain the non-zeroproblem, under the assumption that the pixel values are given
coefficients, and the shaded rows correspond to selected basis functions. a—ﬁﬁctly by solving the resulting linear system given in (5).
selection here is just one of the 24 possibilities for the given shape. . . : .

Section IV gives a fast alternative to solving that system.

Take a moment to compare this with the strategy proposed
by Shenet al. [11]. There the highest frequency coefficients Il. BASIS SELECTION STRATEGIES
are always forced to zero, thus fixig@. Instead, they vary If we began greedily adding basis functions that minimize
by mapping the input shape into a small set of predeterminite reconstruction error, we would obtain the method of Kaup
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and Aach [9]. However, this presumes that we know thef the next diagonal element d@f to add toA permanently.
pixel values inside the shape and requires solving a largéhen there are ties, we choose the vector of the coefficient
linear system for every transformed block. We present sevetlaht comes earlier in the standard zig-zag scanning order.

different alternative algorithms. Note that the only divisions and square roots performed
involve precisely the terms we are maximizing, and so the
A. Fixed-Shape Bases whole procedure is very numerically stable. It also yields

intuitively appealing results for some special examples. When

The first approach IS denved'from the assumptlon that & is the N x N DCT and the support region is one quadrant
can spend a long time computing a good basis to use for

particular shape, and then wish to apply the resulting transfomathe block, all of the even DCT basis functions are selected,

0 a large number of different input vectons, For example, %ormmg an x 5 DCT. In this case the resulting transform

this can be used to extend a rectangular frame which is rﬁtorthog.onall, and the _paddlng Is precisely equivalent to that
the mirroring extension method.

a multiple of the transform block size out to an integra? : 9 on 4 9
number of blocks. The method proposed here can be taken as-g\he whole procedure required(m=n") time and0(m")

baseline against which to compare faster alternatives prese 5;}88“}’ making it actually more computationally expensive
in the nextgsection P P han Kaup and Aach’s method. But if it only needs to be

done once up front, the actual application of the transform is
Shenet al. note that||u’ls < [|[A~T|2||ul2, where the P PP

]2 norm is theZ, norm, also called the spectral norm forIess expensive. One possibility is to compute the appropriate

matrices. Since the magnitude of the output vector is bound% dd!ng vr?lufes ar;}d gg? ilp(%l:)r/ the c;]rlgmal transfEm
via the magnitude oA 7', they suggest minimizing this [11]. sing the fact tha N , We have
This is equivalent to maximizing the smallest singular value {u} _ [AT CT} {U’} 9)
of A. However, this only controls the worst-case performance v B” DT |0
of the transform. It cannot distinguish between two differeolving the lower half of this equation for yields
choices which have the same smallest singular value. . P
We attempt instead to make the transform as close to v=DB =B"A"u (10)
orthogonal as possible, since non-orthogonal basis functiorise Cholesky decomposition provides a convenient vehicle for
will carry redundant information. This is done by maximizingomputing theA~7 term:
det(AAT). Since we are considering the full 2-D transform at T — e e 1
once, an exhaustive search could require as manysas10'® v=B'(AA")"Au=B'L L Au (11)
bases to be examined for a 32-pixel shape ir8an8 block TheL~7 andL~"' terms are quickly computed using back sub-
and is clearly impractical. stitution and forward substitution, due to the lower triangular
Instead we propose a greedy method. The basis is initializegture ofL. The inverses are also very well conditioned, as the
with the truncated row corresponding to the DC coefficiengnly divisions performed are by the diagonal elementd.pf
We then add the unselected basis vector with the largegiich we maximized. All of the matrices may be multiplied
component perpendicular to the subspace spanned by @ in advance, producing a single —m) x m matrix which
previously selected vectors. computes the padding from the inputu.
The above procedure can be formulated as an incrementajvhen the number of pixels in the region is small, it may
Cholesky decomposition & = AA™. The Cholesky decom- be faster to compute the transform coefficients directly. Again,

position factors a symmetric positive definite matfixinto the Cholesky decomposition can be used to efficiently solve
the productLL”, whereL is lower-triangular. A matrix of for the transform coefficienta’ in terms of the inputx:
the form AAT is positive definite so long as the rows Af , T 1 Py 1
are real and linearly independent. The closed-form expressions & =A U= (AAT)Au=L""L" Au (12)
for the elements ol. are: The matrix in this expression is only. x m, which may be

i1 better than thén —m) x m matrix multiply required above. It

e — Z 12, @) also has the adyantage that the original transf_@rdoes not
P need to be applied afterwards. However, the first method may
) i1 still be better for a given shape if there are fast algorithms to
. - P g computeG.

i lii <e” ;l]klm) 7= (®) Finally, another special case arises when the selected basis
Because the matrix is symmetric and positive definite, e ctors are actually orthogonal. In this cadejs diagonal,
expression under the square root is always positive. nd , 7 9

In fact, the diagonal elements are precisely the terms we uw=A"u=F"Au, (13)
wish to maximize.;; is the magnitude of the component ofwhere F is a diagonal matrix with entries equal to the
row a; that is perpendicular to the subspace spanned by all timagnitude of the rows oA:
rows a;, for j < 4. Thus, we tentatively add each unselected T
row to the currentA, add the corresponding row and column fii = llai {2 (14)

to E, and compute the new row that would be added.to This reduces the entire operation to padding with zeros,
From these, we choose the vector that maximizes the vaklgplying the original transforrx, and then scaling the output.
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B. Fast Basis Selection In this casey’ will not in general be zero, which requires

Although the computational complexity of the previou_§'5 to revise our deriyation 01_‘ the output of the first stagle,
transform is manageable if the process of selecting the baSd€rms ofu, given in equation (5). We must add a term to
can be done once in advance, it is too expensive for€guation (4), giving

dynamically changing shape, except with very small transform — Dalv’ _ Dal Cgu (20)
sizes. This section demonstrates a more efficient method that _

selects a basis for each stage of a separable transform withUgstituting (20) into (2) now produces

few table lookups. The price we pay for considering the stages o = AaTu + BGDE;IV/ 1)

separately is that we will no longer always be able to force

exactlyn — m of the output coefficients to zero. Replacingu and v with v’ and v’ in equation (10) and
It is impractical to pre-compute a set of basis functions faubstituting that into (21) yields

every possible shape in a 2-D transform of any moderate size. , T 1T A —T. 1

If our transform is separable, we can reduce the number of uw=Ag utBeDg BuAy u

possible shapes to something more tractable by considering = (I-BeDg'BhAL" ) 'AG u

each stage independently. The assumption of a separa,gwa”y,

transform is reasonable, since such transforms afford fagfy g pstituting the expression in equation (22)dorgives

implementations, making them desirable on their own meritgg 5, equation for the entire transform:

Ideally, we would like to be able to select a basis for each stage

of the transform so that we could foree— m coefficients to

zero after the second stage. We first demonstrate why thi

cannot be done and then propose an alternative. 2
prop from both stages. In general, we cannot ensure that this inverse

Consider now a two-stage transform, = Gx, z = Hy, exists without considering both stages jointly. In fact, an initial
where bothG andH are unitary transforms. We also assumg 9 9es) y- '

G is arow transform e.g.,G is block diagonal, with\ equal Implementation _Whlch _|gn0red _thls fact frequently ran into
. R e cases where this matrix was singular, despitg, Dg, and

N x N blocks, like the one shown in Figure 2. S|m|IarIy,A all beina well-conditioned

it is assumed that there is a suitable permutation magrix 9 )

: o ;o
so thatRHR ! is also a row transform. For the DCR gflejolqtmn o th|§ Is to use the _transform »

. . . AL’ Ag' uinstead. This can be accomplished by forcirg
rearranges andz so that they are indexed in column-majo

f . i s )
order instead of row-major order, e.qk mapsNi + j to to zero in the flrf;t stage, anc/j/ then hgldm@ fixed while
. Ay solving for a newv’ that forcesv” to zero in the second stage.
Nj+i,fori,je{0...N —1}. : ; .
. ; . However, this would require a modification to the decoder
Extending our previous notation, we now use four perm

- / . . .
tations P, Q, S, and T, to partition the input and outputltlo replacev’ with zero after the first stage of the inverse

. ; ) . ransform. Such a modification is against our design principles.
of each transform into padding and non-padding values. Thelnstead, we apply our algorithm to the first stage of the

permutationR is injected after the latter two so that we can _ nsform onlv. to forca’ to zero. Then. we aoply it again to
operate on the block diagonRHR~!. Let Y. ' ' pply it ag

the second stage, but this time we only consider a coefficient

(22)

replacingu’ with u” and u with u’ in equation (5)

u” = (A —BeDg'Bfy) 'AG (23)

Sf\lote that the first stage contains an inverse involving terms

u u’ to be padding if the entire row it belongs to is padding in the
Px = [v } Qy = {v’} (158) initial shape. This is the only case where we can ensure that the
o u’ decoder will discard any changes we make to the coefficients.

SRy = {v/} TRz = |:v//] (15b)  Shenet al. consider two similar approaches in their padding

scheme, and also reject the first one [11]. However, their
reasoning was that the coding performance of the second one
was better, even though it was no longer a non-expansionist
transform.

In order to implement a single padding stage, we take
- - advantage of the block structure & and RHR”. Due to
whereG = QGP~! andH = TRHR™'S™". ~this, we need only consider the input and output of a single

Once more, the transfornG andH can be partitioned into piock at a time. We construct a lookup table indicating which
blocks as follows: basis vectors are to be used for every possible shape. Since this

The total transform is thus:
y = Q 'GPx
z = R T 'HSRy,

(16)
7

u Ag Bgl[u is done in advance, we can use any metric we want to weigh
[V/} = [CG DG] [V} (18) the different possible bases. Our method from Section IlI-A,

o’ Ay Bl [o Shenet al’s suggestion of mgximizing the smallest sin.guilar
{V,,} = [CH DH:| {v,} (19) value of A, or even the coding gain under some statistical

image model such as aAR(1) process [12], all can be used

Again, P is fixed, determined by the shape, and simil&ly to evaluate the different choices.
is also fixed a8 = QR~!. The permutations we are free to If all NV blocks in each transform are the same, only one
choose ard) and T. However, observe what happens whelookup table is needed for each stage. For a transform such as
we try to forcev” to zero as before. the DCT, whereG = RHR !, we can even share the same
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lookup table between stages. The total cost is ttiisbytes of points in two non-intersecting sets. Unlike Chenal’s

and 128K of ROM for N = 8 and N = 16, respectively. original approach, our basis selection strategy only needs
The entire process can also be reformulated to operate oientially non-zero coefficients to guarantee thahas a left

columns first, instead of rows. Since the decoder operaiagerse and thus that the intersection will always be non-empty.

identically regardless of the transform order in the encoder,The basic steps of the algorithm are as follows:

we do not need to send any side information and so cani) Compute initial padding values with some method.
make this choice on a block-by-block basis. It is possible to 2) Compute[gﬁ] - (”;[3}
encode a block both ways and use the one that provides bettes) |f v/ is sufficiently small, or a fixed number of iterations
rate-distortion performance. However, this is computationally  have passed, stop.

expensive, SO we propose a simpler scheme. 4) Compute[3] —G-1 [3’],

We choose the order that allows us to use more padding in5) Go to Step 2.
the second stage. In the event of a tie, we select the order that
yields a better transform according to our optimization criteria.

We store the logarithm of the determinant, minimum singular

value, or coding gain for each shape so that they may simply C

be added. The log of the minimum singular value is first scaled 2

by the number of pixels in the shape to preserve their relative

importance. Keeping these to 16 bits of precision requires an

extra512 bytes and 28K for N = 8 and N = 16 respectively.

In our implementation withV = 8, we store them to twelve Cl

bits of precision, and use the special va3000 for the
empty shape. This lets us decide on the transform order simply
by making 16 table lookups and adding the results for each
direction.

This method also eliminates the need to solve one large
linear system, and instead allows us to solve one small linear
system for each row (resp. column), and then one additiori
small linear system for all of the columns (resp. rows). . . .
However, solvi?w/g these linear systems is still anry F;xpensizlelzor a single 1-D 8-point DCT, the cost of applying the

compared to the normal cost of applying a linear transfor%dapt've transform using the Cholesky factorization methods

in the non-shape-adaptive case. Even though the numberdNen in Section llI-A averaged over all shapes is about twelve

shapes we have to consider is now limited, for large transforr??@es the cost of a single iteration of Chenal’s algorithm.
i

the cost of pre-computing and storing all the solutions i nfortunately, this algorithm can take nearly that many itera-
advance would be prohibitive ions to converge, even when the rows Afare orthogonal.

The next section addresses the problem of finding a fEI‘:js>t<am|ne the illustration in Figure 4. In this example, each set

alternative to solving these systems. The method we adop{S a 1-D line in a 2-D plane. The second séb, has been

I =1 i i
an improvement of Cheet al’s iterative POCS approximation rq%ated by the _transforn_(; ' _Yet. every full .|terat|on, the
distance to the intersection point is only cut in half.

method [10]. Since we will now consider each stage mdepen—In general, the algorithm converges linearly by a factor of

dently, we drop the more complicated notation of this section S :
and revert to the simpler notation of Section IlI-A. cos %(C1, C2) each projection, wherg(C7, C») is the angle

between the two subspaces, defined by [13]

|X(1) .x(2)|
IV. POCS-BASED TRANSFORM cos(C1, Cy) = su (24)

xecy x@ec, X [l2[x]l2

4. Iterative projection between two convex sets.

First we present a review of the POCS-based method of
Chenet al. [10]. The idea is to find a point in the intersectiors the angle between the subspaces gets smaller, the algorithm
of two convex sets. The firs€}; = {[] : u=u*}, contains takes even longer to converge.
some fixed pixel valuea™ padded with some arbitrary values From this illustration, it is clear that we can do a lot better.
v. The second set, = {G~'[%] : v/ = 0}, contains It is too expensive to solve thex x m linear system that
all possible pixel values that force the coefficients of theould give us the intersection point in one step. However,
unselected basis functions to be zero. We also defihe= it is possible that by solving a very small linear system,
C1—[% ], which unlikeC; is a proper linear subspace, sinceve can improve the convergence speed without excessive
it contains the zero vector. computation.

The algorithm proceeds by projecting back and forth be- Given two points in each set, we can extrapolate a pair of
tween the two sets iteratively. Because the sets are convex, 1He linear subspaces that pass through each point pair. In the
distance between the point and its projection cannot increakestration above, these lines meet at the intersection point of
from iteration to iteration. Convergence is reached when th@i andC5, but in higher dimensions they might not intersect.
distance fails to decrease, in which case the algorithm Ha& can still find the point on the line i@ that is closest to
either reached a point in the intersection, or the closest ptie line in Cs, however. This point must be at least as close
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as the point produced by the original POCS algorithm and is6) Computev* = v(1) + (v — v(D),
often much closer. 7) Compute[¥ ] = G[u.].
More formally, consider the four points, ..., x®), the  8) Replaceu®™ with u® andv® with v(®.

first and third inC, and the second and fourth their respective 9) Go to Step 3.

projections intoC;. Then we can express the points on each Note that instead of allowing an arbitrary method of initial-

line that are closest to the opposing line as izing the padding values, which can improve convergence in
xt = x4 11, (x® — xM) € Oy (25) the original algorithm, we always initialize with zeros. This

b () @ @ lets us avoid an extra application &f and G~! in order to

x’ =x + pp(x x7) ey (26) get the recurrence started. The padding values computed after

for some values ofi, and ;. Noting that the line joining @ single iteration of the modified algorithm are already very

these two points is perpendicular to both lines, we have: good.
The total cost of computing:, is just 2m multiplies.

(x" —x") - (x®@ —xV) =0 27) " Another (n — m) multiplies and one division are needed to
(x —x9) - (x® —x@) =0 (28) compute the new padding values. Thus the total cost of the
tra steps is only.+m multiplies and one division. Whem
large, the entire formulation can be moved to the dual spaces
with y, y® € GC; andy®,y® e GC,. The algebra is
virtually identical, and the locationy;, of the closest point in
_ dzia2d2131 — dz131d2142 29) ©> becomes
d4242d3131 — d§142 ’

Substituting equations (25) and (26) into equations (2?55<
and (28) reduces this to &ax 2 linear system which we can
solve for uy, yielding

;v (v )
whered,g., = (x(?) — x(@) - (x(1) —x()). Ho = v v |2

Because of the close relationships between our points, this

last equation is particularly simple to compute. We denote tH&!S 91ves us the solution directly in the transformed domain,
four points: avoiding a transform after padding, but requires one more up

_ front to start the recurrence. The advantage is that- m
xM =G 1w’ ] = [u)]  x®=[u,] (30a) multiplies are used, which might be smaller than- mn.
«® — a1 (W] = Hii] x@ =[] (30b) On average, the total cost of the best of the two methods
v v is 1.25n multiplies, or10 multiplies for an8-point transform,
Substituting these into each of the constants that appearaimd one division. The best algorithm for ti3epoint DCT,
equation (29) produces: by comparison, requiresl multiplies [14]. In this case, the
additional computation required is about half the cost of one

(34)

diaz = [[v® = vOI3 (313) iteration. In practice the relative cost could be largetiand
oz = (u* —u) - (u® —u) (31b) G- are available in dedicated hardware.

d3131 = HX(?)) — X(l)Hg (31C)

do1so =0 (31d) V. RESULTS

daoao = dsz1a9 (31e) We have implemented the padding algorithms described

. . . . jn_an encoder for the Theora video codec [15]. Theora is a
The equations in (31) can be substituted into the expression « pased codec that utilizes @nx 8 DCT and motion
for u, from equation (29), simplifying it to:

compensation.
_ d2131 Four different basis selection algorithms were implemented:
oo = d3131 — d3142 greedy maximization of the transform’s determinant over the
(u* —u®) . (u® —u®) (32) entire 2-D transform as described in Section [lI-R-Q
[u® —u®|2 Det) and independent maximization over row and column

transforms as described in Section IlI-B with respect to
The divisor in equation (32) is zero only if") andu®® are three different criteria—the determinarDd), the minimum
equal. In this case, the algorithm has converged, and iterat'gzmgmar value Iin &), and the coding gain under ahR(1)
can stop. The new point i, is now given by computing a model with correlation coefficieny = 0.95 (Gain). For the
new set of padding values, which we will denate. last three, an exhaustive search was performed over all possible
(33) bases and a table of the optimal choice for each of the 256

v =v(® 4 ,Ub(V(Q) — vy . . : J
different input shapes was created. A fifth selection strategy,

The complete algorithm is thus: Kaup and Aach’s original basis selection methédh), was
1) Assignu™ andv( the value0. also included for comparison [9]. Where there were ties, the
2) Compute[‘vlﬁ] = G[g* } first basis in the lexicographic order on the coefficient numbers
3) If v/ is sufficiently small, or a fixed number of iterationswvas used.

have passed, stop. Three different algorithms were implemented to generate
4) Compute[‘vlgi} =G '[y]. the padding. The first was the direct solution of the linear

5) Computey, via equation (32). system, using the matrix multiply given in equation (11)
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(MMult), the second was the original POCS methB®CS blocks which required some padding; interior blocks were
[10], and the third was our accelerated POCS method givercluded. Similarly, distortion was only measured over the
in Section IV POCS-A. For MMult, we did not implement support region of padded blocks.

the alternative formulations given in equations (12) and (13).

Similarly, for POCS-A we only implemented the version that 44 44
operates in the image domain, not the dual space formulatiol 43
that operates in the transform domain. Implementing these
alternative versions should increase computational efficiency
but should not otherwise affect the results.

Any combination of basis selection and padding algorithm
can be used together, thoudgdA does not require one, as
the transform coefficients are computed directly as part of the
selection strategy. Finally, as a baseline for comparisons, we
implemented the MPEG-4 padding algorithtREG-4) [8].
This gives a total of fourteen available algorithms, all of which
produced bitstreams which could correctly be displayed by the 05
existing Theora decoder without modification.

In the interests of creating reproducible research [16],
all the code and data gathered in these experiments ®H 5. Bitrate vs. distortion for the croppe@ioast Guardsequences with
be accessed from the Xiph.org Subversion repository \atious basis selection strategies.
http://svn.xiph.org/experimental/derf/
theora-exp/doc/theory/padding/ . Test sequences The results are shown in Figure 5. The performance of
can be downloaded frorttp://media.xiph.org/ . all four of our basis selection algorithms are virtually in-
distinguishable, which is unsurprising as much of the time
they select the same basis for a given shape. In most cases,
1-D optimization for coding gain gives an extremely slight

The first experiment we performed was to use our algadvantage. At low rateKA method gives a slight increase in
rithms to pad an input source with non-standard dimensioPSNR for a given quantizer, but nearly identical rate-distortion
to a multiple of 16. Theora handles non-multiple-of-16 imageerformance. At high rates, performance drops off below that
sizes by expanding the width and height to the next multipisf the other basis selection algorithms.
of 16 at the encoder, and then storing a cropping rectangleThis suggests that full 2-D optimization of the selected
in the header so the decoder can recover the original imagisis is in fact unnecessary, at least for rectangular shapes.
dimensions. The greedy algorithm presented may still be useful for 1-D

This form of signal extension is a special case of the fixedptimization with larger transform sizes, where an exhaustive
shape padding case postulated in Section Ill-A, where basisarch could prove intractable. For the small DCT used by
selection can be done once up front. In this particular casgost video compression algorithms, however, there is no
the independent two-stage process we use in Section Ill-Brégason not to use one of the fast basis selection algorithms.
exactly equivalent to the coupled two-stage process given init can also be seen that at low bitrates, M@EG-4padding
equation (23). This is due to the fact that, for any rectangulaigorithm outperforms our padding algorithms. For each quan-
shape, the zeros from the row transforms will always be in thiger, our algorithms yield about &5 dB improvement over
same column, thus forcing the entire column to zero. Also, MPEG-4 with the same quantizer setting, but also requires
this case the number of possible shapes is small enoughnigny more bits. This indicates that our initial assumption, that
solve the linear system for each in advance. forcing zeros into the DCT coefficients will increase coding

For this experiment we used the standard QCtiast Guard efficiency, does not hold at low bitrates.
sequence. This sequence continually pans, causing a good dephrt of the reason for this is that the size of the non-zero
of activity around the borders—some that is easily predictedefficients generally increases, which both makes it more
by motion compensation, and some that is not. Sixty-thrgiRely a coefficient will not be quantized to zero and increases
test sequences were generated by cropping betweand the number of bits required to code the coefficients that are
7 pixels from the top, bottom, left, and right. The left anchot zero. At medium to high bitrates, the story is reversed, and
right side always used the same cropping value, as did igr padding algorithms are superior. Part of the advantage of
top and bottom. All of the test sequences were then encodggbidding decoder modifications in our design is that we can

with a constant quantizer, and the total bitrate and squaréslect the appropriate algorithm for the target bitrate.
error added up. This was repeated for all available quantizers

and for each of the four basis selection algorithms, using the . . .

MMult algorithm to perform the padding for each choseR: Dynamic Basis Selection

basis. The same sequences were also padded witiKAhe The next experiment we performed was to compare the
andMPEG-4algorithms for comparison. Bitrate was recordegarious basis selection algorithms on dynamic shapes. For this
only for the residual DCT coefficients, and only for imag@urpose, we ran the algorithms on a segmented version of the

42
41
40
39

. KA

"\ 2-D Det

38 | Det

37 Min o
. Gain

36 I\ MPEG-4

35

34
33
32

15 2 25
Bits Per Pixel

A. Boundary Extension
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standardClaire sequence. The framerate was decimated loyaximum number of iterations allowed was varied, and the
5, and the remaining frames segmented into ten to fourteate-distortion curve for each limit is plotted against that of

segments. the MMult method in Figures 7 and 8.
Since Theora does not yet support arbitrary shape coding,
we encode a separate sequence for each segment with 44 — "

constant quantizer. Only the blocks that belong to that shape 43 43

are coded, and for blocks on the boundary of the shape 4
our shape adaptive padding is used, even though no shay 4
information is transmitted. Because the various foreground g 4

42
41
40

objects do not keep the same segment number throughout tr g % 39 |1 eraton.
video, we encode only INTRA frames. This was repeated for 538 % |\ dtertons
all available quantizers and for each of our four basis selectior 37 37 |\ 16 Hterations
algorithms, using th&IMult algorithm to perform the padding 3 36 [
for each chosen basis. The experiment was also run using th 3 ; 35
KA and MPEG-4 algorithms. Bitrate and squared error error 34 34
were measured in the padding blocks as before, and summe 33 T 2 3 3 5 6 72
over all segments and all frames in the sequence. Bits Per Pixel
44 e Fig. 7. Bitrate vs. distortion for the segment€thire sequence padded with
43 43 the original POCS algorithm.
a2 42
“ 41 As can be seen in Figure 7, the original POCS algorithm
o0 40 fails to coverge to the same qualiMult provides at high
3239 S N bitrates, even after 16 iterations. This is likely due to the fact
§38 ol that our implementation uses only integer operations, and the
a7 7 |can step size becomes smaller than a single pixel value. Increasing
36 3 [MPEC4 the precision to which pixel values are stored could resolve
35 35 this, but would also require a more accurate implementation of
34 34 the DCT transform. Even at low bitrates, it can take 8 iterations
B s T 15 3 25 3 35 4 a5 5 55 &8 to achieveMMult quality, while medium bitrates can require
Bits Per Pixel as many as all 16.

. . . . . . . 44 44
Fig. 6. Bitrate vs. distortion for the segment€thire sequence with various

basis selection strategies. 43 43
42
The results are shown in Figure 6. Here the picture is 4
quite different. This time th&A algorithm peforms the best,
though it is the second most computationally expensive. The
Gain algorithm outperforms all of our other basis selection
strategies at all bitrates by as much BslB or more. This
further increases the range of bitrates at which this padding
algorithm is superior tMPEG-4
Interestingly,2-D Det is actually worse than 1-Met and
Min o at low bitrates, and gives only a very minor improve- ¥ 05 1 15 32
ment at high bitrates, despite being the slowest algorithm.
Initially, we chose to make a 2-D version of tieet strategy
because the formulation is simple. It might also be possibigy. s. Bitrate vs. distortion for the segment€thire sequence padded with
to make a 2-D version of th&ain strategy, which is clearly the accelerated POCS algorithm.
superior toDet and Min o, but these results suggest that it is
not likely to be worth the increased computation and storageln Figure 8, our accelerated POCS algorithm tells a very
requirements. different story. Two iterations are sufficient to do better than all
16 iterations of the original POCS algorithm, and 3 is sufficient
_ to get within0.1 dB of MMult. Because the steps are larger,
C. POCS Acceleration integer precision is sufficient to readMult quality at all
Our final experiment used the same setup as the previdaisates. It should also be noted that although the same basis
experiment. However, this time we only tested ®ain basis is used for all 8 columns or rows for the second direction of
selection method, and varied the method of computing thiee transform, it still requires a total of 16 to 24 iterations. In
padding pixels. For both theOCSandPOCS-Amethods, the this case, it should be faster to only UB®CS-Aon the first

42

41

N
=)

40
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39 "+, 2 Iterations
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direction, and us&Mult for the second direction. Solving thecodec and On2 Technologies, for donating the VP3 codec, on
linear system generally requires floating point, however, whiebhich Theora is based.
may not be available on some hardware.
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