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Abstract— The coding of arbitrarily shaped images and video
has become an increasingly important problem, but the design
of simple and efficient transforms with arbitrary spatial support
remains difficult. Fixed-size transforms, such as theN×N DCT,
however, are mature and well understood. We propose a simple
padding framework that allows a fixed-size unitary transform
such as the DCT to be used without modification over arbitrary
regions. We develop several algorithms inside this framework,
compare them, and identify one superior approach. Our methods
are computationally efficient, can take advantage of existing
hardware, and impose no additional overhead on the decoder.

Index Terms— Arbitrary spatial support, shape-adaptive DCT,
padding.

I. I NTRODUCTION

SHAPE ADAPTIVE transforms are required for object-
based video compression, where separate objects in a

scene are coded individually, along with a description defining
their shape. This preserves sharp edges between objects with-
out introducing ringing and provides additional functionality
that frame-based video compression cannot. However, even in
the frame-based case, encoding a rectangular image which is
not a multiple of the block size in a block-based codec requires
special handling of the partial blocks.

A. Shape Adaptive Transforms

One class of solutions to the arbitrary shape problem is
to design a family of transforms that can be applied to every
conceivable shape. These include methods developed by Gilge
et al., Sikora and Makai, and Strasiński and Konrad [1]–[3].
They are typically characterized by equal complexity in the
encoder and decoder, a complexity greater than that of the
unmodifiedN ×N DCT.

Gilge et al.’s method starts with an orthogonal set of basis
functions over a rectangular region, restricts them to the
support region of the current shape, and then uses a Gram-
Schmidt procedure to re-orthogonalize them [1]. This requires
both large storage and high computational complexity, but
provides very good compression.

The original method uses monomialsxiyj as basis functions
and requiresO(b2m) operations andO(bm) storage, whereb
is the number of basis functions computed andm is the size
of the region. At low bitratesb can be small, but at higher
ones it might be larger thanm, as some of the computed
basis functions are linearly dependent on the previous ones and
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must be discarded. These computational requirements were
later reduced by Philips toO(b3/2m) operations andO(

√
bm)

storage [4], still for the special case of monomials.
Sikora and Makai propose the SA-DCT algorithm [2]. This

moves the samples inside the shape to the beginning of each
row and applies anNi-point DCT to each row, whereNi is the
number of samples in rowi. The process is then repeated on
columns. The order can reversed, processing columns first and
then rows, which yields different results. Further modifications
ensure the transform is orthogonal and DC preserving [5], [6].
The SA-DCT requires an implementation of a DCT for every
possible row size, and can distort signal statistics by mixing
coefficients of different frequencies in the column transforms.
This last will be discussed in more detail later.

Strasínski and Konrad developed a method for converting
any orthogonal transform into a shape-adaptive transform [3].
However, their algorithm must choose between four differ-
ent options at each butterfly step in the transform. When
implementing this in hardware, it requires extra silicon to
implement all four options, yielding a complexity the authors
estimate to be about twice that of a normal DCT. A software
implementation requires conditional branches, which can be
very expensive on modern general purpose processors if mis-
predicted due to their long pipelines.

B. Shape Adaptive Padding

A more flexible class of approaches is to use a standard
block transform such as theN ×N DCT in the decoder, and
simply discard all the pixels outside of the region of support.
The encoder is then free to pad the block with any values that
make the resulting transform coefficients easier to compress.
This allows the encoder to make the trade-off between good
compression and computational complexity according to its
requirements, and allows the decoder to use a single optimized
transform for all blocks, taking advantage of any standard
hardware implementations.

The simplest choice of padding is to use a constant value
such as0. This is experimentally shown to produce poor re-
sults [7]. However, it may still be useful for inter frames, where
the expected value of the residual is small [8]. Techniques such
as mirror extension are intuitively appealing, but are hard to
generalize to non-convex shapes and can yield different results
depending on whether rows or columns are mirrored first. They
also do not take full advantage of the signal statistics when
only a few padding values need to be added, as only pixels
near the edge of the shape are mirrored.
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The method adopted by MPEG-4 TMN11 initializes the
padding with a constant value and then iteratively runs a small,
low-pass filter over the padding region [8]. On the edge of the
padding region, the support of the filter contains non-padding
pixels, which helps reduce the sharp discontinuities introduced
by using a constant value alone. Again, the full signal statistics
are not used, as only the edge pixels—those most likely to
contain outliers from a segmentation algorithm—contribute to
the padding values. This approach reduces the magnitude of
high-frequency coefficients, but there may be more non-zero
coefficients in the transformed block than there were pixels in
the original shape.

Several approaches have been proposed which attempt to
force one coefficient to zero for each padding pixel added,
producing a critically sampled transform. This amounts to
selecting a subset of the full transform’s basis functions and
solving a linear system for the padding values that will force
all other basis functions to zero.

Kaup and Aach propose a method that selects the basis
functions by successive approximation [9]. The basis is built
up by adding at each step the one function that reduces the
residual error by the largest amount, stopping when the total
error reaches a threshold. In order to evaluate the residual error
at each iteration, the coefficients of the selected basis functions
are obtained by solving a system of Gaussian normal equa-
tions. This can be done using the Cholesky decomposition,
which can be constructed by adding one row at a time as the
basis grows. Thus the cost of a single Cholesky decomposition
is amortized across the entire process. However, this still
requires time and space similar to that of the unoptimized
version of Gilgeet al.’s method. This is acceptable when
encoding still images, for which the algorithm was originally
designed, but is too expensive for video.

Chenet al. propose an iterative method based on the theory
of Projection Onto Convex Sets (POCS) [10]. Initial padding
values are chosen with some simple method, and a forward
DCT is applied to the entire block. The most significant low-
frequency coefficients of the result are kept, and the rest are set
to zero. An inverse DCT is applied, and the result is used as
padding values for the next iteration, after replacing the non-
padding pixels with their original values. The process stops
after some small number of iterations, or if the reconstruction
fails to improve.

This method avoids solving a linear system by using stan-
dard transforms which may be heavily optimized or imple-
mented in hardware instead. The difficulty with this method
is that convergence is only guaranteed if the same coefficients
are zeroed in every iteration, and there is no guarantee that the
non-zero coefficients selected in the first iteration even corre-
spond to linearly independent basis functions when restricted
to the support region.

Shenet al. propose a technique of re-arranging each row
so that padding pixels can be interleaved at fixed locations,
chosen based on the number of non-padding pixels in the
row [11]. Then a small linear system can be solved to force the
highest frequency coefficients of a 1-D DCT applied to each
row to zero. The choice of padding pixel locations ensures that
the firstNi DCT basis functions are linearly independent when

restricted to the non-padding region. Although the process can
then be repeated on columns, Shenet al. report better energy
compaction by only adding padding where an entire row is
zero, even though this may result in more thanm non-zero
coefficients.

Like the SA-DCT, the algorithm may operate on columns
first, with different results. Shenet al. compress each frame
with both orders, and keep the one with the best rate-distortion
characteristics. Also like the SA-DCT, the re-arrangements
can distort signal statistics, which likely explains the im-
provement from limiting the shape-adaptiveness of the column
transforms. Finally, this method requires modification to the
decoder to read the order of row and column transforms
from the bitstream and to restore the pixels to their original
locations. We wish the decoder to be agnostic to the padding
mechanism used, to retain the flexibility of the encoder to
choose whatever method meets its requirements.

II. PADDING FRAMEWORK

We develop a new set of shape-adaptive padding algorithms
based on the technique of selecting a subset of the available
basis functions of a completeN ×N unitary transform. The
thesis is that, since zeros are easy to compress, we will in-
crease compression efficiency by forcing as many coefficients
as possible to zero. By choosing a subset that is linearly
independent over the support region and critically sampled, the
basis vectors selected uniquely determine the padding values
required to force the remaining coefficients to zero. Although
this goal is easy to express and design algorithms for, its
optimality in the rate-distortion sense is currently unknown.

x

Fig. 1. Representing a4 × 4 region as a column vector. Dark pixels belong
to the support region, while white pixels are padding.

This section describes the formal framework in which
these methods are developed. We begin with some notation.
Consider a unitary matrixG of sizen × n, wheren = N2.
That is,y = Gx describes a complete 2-D transform, such as
the DCT. The input values are arranged in a single column-
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vectorx in row-major order (see Figure 1), as are the output
valuesy.

Let P be a permutation matrix applied to the input vectorx
such that it can be partitioned into a non-padding partu of size
m ≤ n and a padding partv of sizen−m, i.e., Px =

[
u
v

]
.

Now letQ be a permutation matrix applied to the output vector
y such that it can be partitioned intom potentially non-zero
coefficientsu′ andn −m coefficientsv′ that will be forced
to zero. That is,Qy =

[
u′

v′

]
. Now, let G̃ = QGP−1 be the

permuted transform, and partitioñG into blocksA, B, C, and
D as follows: [

u′

v′

]
=

[
A B
C D

] [
u
v

]
(1)

The shape, which is given as input, determinesP. The effect
on the transformG is to partition its columns, as illustrated in
Figure 2 for the same example shape used in Figure 1. We use
a row-transform in this particular example because its block-
diagonal shape makes it easier to see how rows and columns
are moved around. In general, a complete 2-D transform which
is non-zero everywhere is used.

P

Fig. 2. The effect ofP−1 on a row-transformG. The dark blocks contain
the non-zero coefficients, and the shaded columns correspond to the support
region of the shape.

The basis functions we select to have non-zero coefficients
determineQ, and this is what we wish to identify. Its effect on
the transform is to partition the rows, as illustrated in Figure 3.
In general, the ordering within each partition is unimportant,
so any two permutation matricesP andP′ or Q andQ′ which
effect the same partitioning are equivalent.

Q

Fig. 3. The effect ofQ on GP−1. The dark blocks contain the non-zero
coefficients, and the shaded rows correspond to selected basis functions. The
selection here is just one of the 24 possibilities for the given shape.

Take a moment to compare this with the strategy proposed
by Shenet al. [11]. There the highest frequency coefficients
are always forced to zero, thus fixingQ. Instead, they varyP
by mapping the input shape into a small set of predetermined

shapes chosen only by the number of pixels in each row (or
alternatively each column).

Our approach gives us the flexibility to choose a different
set of basis functions for every potential shape. Thus, a shape
with two pixels adjacent to each other is not treated the same
as a shape with pixels on opposite ends of the block. We
do not move distant, uncorrelated pixels close to each other,
nor do we move neighboring, closely correlated pixels apart.
Thus we can take full advantage of the underlying statistical
assumptions of the image.

Our approach does allow some high frequency coefficients
to be non-zero, but these are expected to remain small, as in
the full transform case. Although low-frequency coefficients
do not form long zero runs as often, forcing them to zero can
still be very beneficial, as they are more likely to have a large
magnitude which can take many bits to encode.

Following equation (1), we can express the transform coef-
ficients as

u′ = Au + Bv (2)

v′ = Cu + Dv (3)

Substituting0 for v′ in equation (3) and solving forv yields:

v = −D−1Cu (4)

We delay the question of whether or notD−1 exists for a brief
moment. Substituting (4) into (2) gives an expression for the
non-zero coefficientsu′ in terms of the non-padding pixelsu
only:

u′ = (A−BD−1C)u (5)

The familiar expression in front ofu is the Schur com-
plement ofD, which we denoteSD. It appears in the block
matrix inversion formula:[

A B
C D

]−1

=
[

S−1
D −SDBD−1

−D−1CS−1
D D−1+D−1CSDBD−1

]
(6)

But since our transform is unitary, we know thatG̃−1 = G̃T ,
and soSD = A−T . This demonstrates thatA is invertible so
long asD is invertible. A similar argument with the Schur
complement ofA proves the converse.

Thus we wish to partition the truncated basis functions
into two groups

[
A
C

]
in such a way thatA is invertible,

and A−T has good energy compaction properties. Since the
column vectors in

[
A
C

]
are orthogonal, it must always have

full rank. Hence there must also bem linearly independent
rows, ensuring at least one invertibleA exists.

A complete padding algorithm in this framework is com-
posed of two stages: selecting a set of basis functions and
then padding so as to force the remaining coefficients to zero.
Section III presents several solutions to the basis selection
problem, under the assumption that the pixel values are given
directly by solving the resulting linear system given in (5).
Section IV gives a fast alternative to solving that system.

III. B ASIS SELECTION STRATEGIES

If we began greedily adding basis functions that minimize
the reconstruction error, we would obtain the method of Kaup
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and Aach [9]. However, this presumes that we know the
pixel values inside the shape and requires solving a large
linear system for every transformed block. We present several
different alternative algorithms.

A. Fixed-Shape Bases

The first approach is derived from the assumption that we
can spend a long time computing a good basis to use for a
particular shape, and then wish to apply the resulting transform
to a large number of different input vectors,u. For example,
this can be used to extend a rectangular frame which is not
a multiple of the transform block size out to an integral
number of blocks. The method proposed here can be taken as a
baseline against which to compare faster alternatives presented
in the next section.

Shen et al. note that‖u′‖2 ≤ ‖A−T ‖2‖u‖2, where the
‖·‖2 norm is theL2 norm, also called the spectral norm for
matrices. Since the magnitude of the output vector is bounded
via the magnitude ofA−T , they suggest minimizing this [11].
This is equivalent to maximizing the smallest singular value
of A. However, this only controls the worst-case performance
of the transform. It cannot distinguish between two different
choices which have the same smallest singular value.

We attempt instead to make the transform as close to
orthogonal as possible, since non-orthogonal basis functions
will carry redundant information. This is done by maximizing
det(AAT ). Since we are considering the full 2-D transform at
once, an exhaustive search could require as many as1.8×1018

bases to be examined for a 32-pixel shape in an8 × 8 block
and is clearly impractical.

Instead we propose a greedy method. The basis is initialized
with the truncated row corresponding to the DC coefficient.
We then add the unselected basis vector with the largest
component perpendicular to the subspace spanned by the
previously selected vectors.

The above procedure can be formulated as an incremental
Cholesky decomposition ofE = AAT . The Cholesky decom-
position factors a symmetric positive definite matrixE into
the productLLT , whereL is lower-triangular. A matrix of
the formAAT is positive definite so long as the rows ofA
are real and linearly independent. The closed-form expressions
for the elements ofL are:

lii =

√√√√eii −
i−1∑
k=1

l2ik (7)

lji =
1
lii

(
eji −

i−1∑
k=1

ljklik

)
j > i (8)

Because the matrix is symmetric and positive definite, the
expression under the square root is always positive.

In fact, the diagonal elements are precisely the terms we
wish to maximize.lii is the magnitude of the component of
row ai that is perpendicular to the subspace spanned by all the
rows aj , for j < i. Thus, we tentatively add each unselected
row to the currentA, add the corresponding row and column
to E, and compute the new row that would be added toL.
From these, we choose the vector that maximizes the value

of the next diagonal element ofL to add toA permanently.
When there are ties, we choose the vector of the coefficient
that comes earlier in the standard zig-zag scanning order.

Note that the only divisions and square roots performed
involve precisely the terms we are maximizing, and so the
whole procedure is very numerically stable. It also yields
intuitively appealing results for some special examples. When
G is theN ×N DCT and the support region is one quadrant
of the block, all of the even DCT basis functions are selected,
forming an N

2 × N
2 DCT. In this case the resulting transform

is orthogonal, and the padding is precisely equivalent to that
of the mirroring extension method.

The whole procedure requiresO(m2n2) time andO(m2)
space, making it actually more computationally expensive
than Kaup and Aach’s method. But if it only needs to be
done once up front, the actual application of the transform is
less expensive. One possibility is to compute the appropriate
padding values and then apply the original transformG.

Using the fact that̃G−1 = G̃T , we have[
u
v

]
=

[
AT CT

BT DT

] [
u′

0

]
(9)

Solving the lower half of this equation forv yields

v = BT u′ = BT A−T u (10)

The Cholesky decomposition provides a convenient vehicle for
computing theA−T term:

v = BT (AAT )−1Au = BT L−T L−1Au (11)

TheL−T andL−1 terms are quickly computed using back sub-
stitution and forward substitution, due to the lower triangular
nature ofL. The inverses are also very well conditioned, as the
only divisions performed are by the diagonal elements ofL,
which we maximized. All of the matrices may be multiplied
out in advance, producing a single(n−m)×m matrix which
computes the paddingv from the inputu.

When the number of pixels in the region is small, it may
be faster to compute the transform coefficients directly. Again,
the Cholesky decomposition can be used to efficiently solve
for the transform coefficientsu′ in terms of the inputu:

u′ = A−T u = (AAT )−1Au = L−T L−1Au (12)

The matrix in this expression is onlym ×m, which may be
better than the(n−m)×m matrix multiply required above. It
also has the advantage that the original transformG does not
need to be applied afterwards. However, the first method may
still be better for a given shape if there are fast algorithms to
computeG.

Finally, another special case arises when the selected basis
vectors are actually orthogonal. In this case,L is diagonal,
and so

u′ = A−T u = F−2Au, (13)

where F is a diagonal matrix with entries equal to the
magnitude of the rows ofA:

fii = ‖aT
i ‖2 (14)

This reduces the entire operation to padding with zeros,
applying the original transformG, and then scaling the output.
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B. Fast Basis Selection

Although the computational complexity of the previous
transform is manageable if the process of selecting the basis
can be done once in advance, it is too expensive for a
dynamically changing shape, except with very small transform
sizes. This section demonstrates a more efficient method that
selects a basis for each stage of a separable transform with a
few table lookups. The price we pay for considering the stages
separately is that we will no longer always be able to force
exactlyn−m of the output coefficients to zero.

It is impractical to pre-compute a set of basis functions for
every possible shape in a 2-D transform of any moderate size.
If our transform is separable, we can reduce the number of
possible shapes to something more tractable by considering
each stage independently. The assumption of a separable
transform is reasonable, since such transforms afford fast
implementations, making them desirable on their own merits.
Ideally, we would like to be able to select a basis for each stage
of the transform so that we could forcen−m coefficients to
zero after the second stage. We first demonstrate why this
cannot be done and then propose an alternative.

Consider now a two-stage transform,y = Gx, z = Hy,
where bothG andH are unitary transforms. We also assume
G is a row transform, e.g.,G is block diagonal, withN equal
N × N blocks, like the one shown in Figure 2. Similarly,
it is assumed that there is a suitable permutation matrixR
so thatRHR−1 is also a row transform. For the DCT,R
rearrangesy andz so that they are indexed in column-major
order instead of row-major order, e.g.,R mapsNi + j to
Nj + i, for i, j ∈ {0 . . . N − 1}.

Extending our previous notation, we now use four permu-
tations P, Q, S, and T, to partition the input and output
of each transform into padding and non-padding values. The
permutationR is injected after the latter two so that we can
operate on the block diagonalRHR−1. Let

Px =
[
u
v

]
Qy =

[
u′

v′

]
(15a)

SRy =
[
u′

v′

]
TRz =

[
u′′

v′′

]
(15b)

The total transform is thus:

y = Q−1G̃Px (16)

z = R−1T−1H̃SRy, (17)

whereG̃ = QGP−1 andH̃ = TRHR−1S−1.
Once more, the transforms̃G andH̃ can be partitioned into

blocks as follows:[
u′

v′

]
=

[
AG BG

CG DG

] [
u
v

]
(18)[

u′′

v′′

]
=

[
AH BH

CH DH

] [
u′

v′

]
(19)

Again,P is fixed, determined by the shape, and similarlyS
is also fixed asS = QR−1. The permutations we are free to
choose areQ and T. However, observe what happens when
we try to forcev′′ to zero as before.

In this case,v′ will not in general be zero, which requires
us to revise our derivation of the output of the first stage,u′

in terms ofu, given in equation (5). We must add a term to
equation (4), giving

v = D−1
G v′ −D−1

G CGu (20)

Substituting (20) into (2) now produces

u′ = A−T
G u + BGD−1

G v′ (21)

Replacingu and v with u′ and v′ in equation (10) and
substituting that into (21) yields

u′ = A−T
G u + BGD−1

G BT
HA−T

H u′

= (I−BGD−1
G BT

HA−T
H )−1A−T

G u
(22)

Finally, replacingu′ with u′′ and u with u′ in equation (5)
and substituting the expression in equation (22) foru′ gives
us an equation for the entire transform:

u′′ = (AT
H −BGD−1

G BT
H)−1A−T

G u (23)

Note that the first stage contains an inverse involving terms
from both stages. In general, we cannot ensure that this inverse
exists without considering both stages jointly. In fact, an initial
implementation which ignored this fact frequently ran into
cases where this matrix was singular, despiteAG, DG, and
AH all being well-conditioned.

One solution to this is to use the transformu′′ =
A−T

H A−T
G u instead. This can be accomplished by forcingv′

to zero in the first stage, and then holdingu′ fixed while
solving for a newv′ that forcesv′′ to zero in the second stage.
However, this would require a modification to the decoder
to replacev′ with zero after the first stage of the inverse
transform. Such a modification is against our design principles.

Instead, we apply our algorithm to the first stage of the
transform only, to forcev′ to zero. Then, we apply it again to
the second stage, but this time we only consider a coefficient
to be padding if the entire row it belongs to is padding in the
initial shape. This is the only case where we can ensure that the
decoder will discard any changes we make to the coefficients.

Shenet al.consider two similar approaches in their padding
scheme, and also reject the first one [11]. However, their
reasoning was that the coding performance of the second one
was better, even though it was no longer a non-expansionist
transform.

In order to implement a single padding stage, we take
advantage of the block structure ofG and RHRT . Due to
this, we need only consider the input and output of a single
block at a time. We construct a lookup table indicating which
basis vectors are to be used for every possible shape. Since this
is done in advance, we can use any metric we want to weigh
the different possible bases. Our method from Section III-A,
Shenet al.’s suggestion of maximizing the smallest singular
value of A, or even the coding gain under some statistical
image model such as anAR(1) process [12], all can be used
to evaluate the different choices.

If all N blocks in each transform are the same, only one
lookup table is needed for each stage. For a transform such as
the DCT, whereG = RHR−1, we can even share the same
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lookup table between stages. The total cost is thus256 bytes
and128K of ROM for N = 8 andN = 16, respectively.

The entire process can also be reformulated to operate on
columns first, instead of rows. Since the decoder operates
identically regardless of the transform order in the encoder,
we do not need to send any side information and so can
make this choice on a block-by-block basis. It is possible to
encode a block both ways and use the one that provides better
rate-distortion performance. However, this is computationally
expensive, so we propose a simpler scheme.

We choose the order that allows us to use more padding in
the second stage. In the event of a tie, we select the order that
yields a better transform according to our optimization criteria.
We store the logarithm of the determinant, minimum singular
value, or coding gain for each shape so that they may simply
be added. The log of the minimum singular value is first scaled
by the number of pixels in the shape to preserve their relative
importance. Keeping these to 16 bits of precision requires an
extra512 bytes and128K for N = 8 andN = 16 respectively.
In our implementation withN = 8, we store them to twelve
bits of precision, and use the special value0x8000 for the
empty shape. This lets us decide on the transform order simply
by making 16 table lookups and adding the results for each
direction.

This method also eliminates the need to solve one large
linear system, and instead allows us to solve one small linear
system for each row (resp. column), and then one additional
small linear system for all of the columns (resp. rows).
However, solving these linear systems is still very expensive
compared to the normal cost of applying a linear transform
in the non-shape-adaptive case. Even though the number of
shapes we have to consider is now limited, for large transforms
the cost of pre-computing and storing all the solutions in
advance would be prohibitive.

The next section addresses the problem of finding a fast
alternative to solving these systems. The method we adopt is
an improvement of Chenet al.’s iterative POCS approximation
method [10]. Since we will now consider each stage indepen-
dently, we drop the more complicated notation of this section
and revert to the simpler notation of Section III-A.

IV. POCS-BASED TRANSFORM

First we present a review of the POCS-based method of
Chenet al. [10]. The idea is to find a point in the intersection
of two convex sets. The first,C1 =

{[
u
v

]
: u = u∗

}
, contains

some fixed pixel valuesu∗ padded with some arbitrary values
v. The second set,C2 =

{
G̃−1

[
u′

v′

]
: v′ = 0

}
, contains

all possible pixel values that force the coefficients of the
unselected basis functions to be zero. We also defineC ′

1 =
C1−

[
u∗

0

]
, which unlikeC1 is a proper linear subspace, since

it contains the zero vector.
The algorithm proceeds by projecting back and forth be-

tween the two sets iteratively. Because the sets are convex, the
distance between the point and its projection cannot increase
from iteration to iteration. Convergence is reached when that
distance fails to decrease, in which case the algorithm has
either reached a point in the intersection, or the closest pair

of points in two non-intersecting sets. Unlike Chenet al.’s
original approach, our basis selection strategy only needsm
potentially non-zero coefficients to guarantee thatA has a left
inverse and thus that the intersection will always be non-empty.

The basic steps of the algorithm are as follows:

1) Compute initial padding valuesv with some method.
2) Compute

[
u′

v′

]
= G̃

[
u∗

v

]
.

3) If v′ is sufficiently small, or a fixed number of iterations
have passed, stop.

4) Compute
[
u
v

]
= G̃−1

[
u′

0

]
.

5) Go to Step 2.

C

C2

1

Fig. 4. Iterative projection between two convex sets.

For a single 1-D 8-point DCT, the cost of applying the
adaptive transform using the Cholesky factorization methods
given in Section III-A averaged over all shapes is about twelve
times the cost of a single iteration of Chenet al.’s algorithm.
Unfortunately, this algorithm can take nearly that many itera-
tions to converge, even when the rows ofA are orthogonal.
Examine the illustration in Figure 4. In this example, each set
is a 1-D line in a 2-D plane. The second set,C2, has been
rotated by the transform̃G−1. Yet every full iteration, the
distance to the intersection point is only cut in half.

In general, the algorithm converges linearly by a factor of
cosψ(C ′

1, C2) each projection, whereψ(C ′
1, C2) is the angle

between the two subspaces, defined by [13]

cosψ(C ′
1, C2) = sup

x(1)∈C′
1,x(2)∈C2

|x(1) · x(2)|
‖x(1)‖2‖x(2)‖2

(24)

As the angle between the subspaces gets smaller, the algorithm
takes even longer to converge.

From this illustration, it is clear that we can do a lot better.
It is too expensive to solve them × m linear system that
would give us the intersection point in one step. However,
it is possible that by solving a very small linear system,
we can improve the convergence speed without excessive
computation.

Given two points in each set, we can extrapolate a pair of
1-D linear subspaces that pass through each point pair. In the
illustration above, these lines meet at the intersection point of
C1 andC2, but in higher dimensions they might not intersect.
We can still find the point on the line inC1 that is closest to
the line inC2, however. This point must be at least as close
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as the point produced by the original POCS algorithm and is
often much closer.

More formally, consider the four pointsx(1), . . . ,x(4), the
first and third inC2 and the second and fourth their respective
projections intoC1. Then we can express the points on each
line that are closest to the opposing line as

xa = x(1) + µa(x(3) − x(1)) ∈ C2 (25)

xb = x(2) + µb(x(4) − x(2)) ∈ C1 (26)

for some values ofµa and µb. Noting that the line joining
these two points is perpendicular to both lines, we have:

(xb − xa) · (x(3) − x(1)) = 0 (27)

(xb − xa) · (x(4) − x(2)) = 0 (28)

Substituting equations (25) and (26) into equations (27)
and (28) reduces this to a2 × 2 linear system which we can
solve forµb, yielding

µb =
d3142d2131 − d3131d2142

d4242d3131 − d2
3142

, (29)

wheredpqrs = (x(p) − x(q)) · (x(r) − x(s)).
Because of the close relationships between our points, this

last equation is particularly simple to compute. We denote the
four points:

x(1) = G̃−1
[
u′(1)

0

]
=

[
u(1)

v(1)

]
x(2) =

[
u∗

v(1)

]
(30a)

x(3) = G̃−1
[
u′(2)

0

]
=

[
u(2)

v(2)

]
x(4) =

[
u∗

v(2)

]
(30b)

Substituting these into each of the constants that appear in
equation (29) produces:

d3142 = ‖v(2) − v(1)‖2
2 (31a)

d2131 = (u∗ − u(1)) · (u(2) − u(1)) (31b)

d3131 = ‖x(3) − x(1)‖2
2 (31c)

d2142 = 0 (31d)

d4242 = d3142 (31e)

The equations in (31) can be substituted into the expression
for µb from equation (29), simplifying it to:

µb =
d2131

d3131 − d3142

=
(u∗ − u(1)) · (u(2) − u(1))

‖u(2) − u(1)‖2
2

(32)

The divisor in equation (32) is zero only ifu(1) andu(2) are
equal. In this case, the algorithm has converged, and iteration
can stop. The new point inC1 is now given by computing a
new set of padding values, which we will denotev∗.

v∗ = v(1) + µb(v(2) − v(1)) (33)

The complete algorithm is thus:
1) Assignu(1) andv(1) the value0.
2) Compute

[
u′

v′

]
= G̃

[
u∗

0

]
.

3) If v′ is sufficiently small, or a fixed number of iterations
have passed, stop.

4) Compute
[
u(2)

v(2)

]
= G̃−1

[
u′

0

]
.

5) Computeµb via equation (32).

6) Computev∗ = v(1) + µb(v(2) − v(1)).
7) Compute

[
u′

v′

]
= G̃

[
u∗

v∗

]
.

8) Replaceu(1) with u(2) andv(1) with v(2).
9) Go to Step 3.

Note that instead of allowing an arbitrary method of initial-
izing the padding values, which can improve convergence in
the original algorithm, we always initialize with zeros. This
lets us avoid an extra application of̃G and G̃−1 in order to
get the recurrence started. The padding values computed after
a single iteration of the modified algorithm are already very
good.

The total cost of computingµb is just 2m multiplies.
Another (n − m) multiplies and one division are needed to
compute the new padding values. Thus the total cost of the
extra steps is onlyn+m multiplies and one division. Whenm
is large, the entire formulation can be moved to the dual spaces
with y(1),y(3) ∈ G̃C1 andy(2),y(4) ∈ G̃C2. The algebra is
virtually identical, and the location,µ′b, of the closest point in
C2 becomes

µ′b =
−v′(1) · (v′(2) − v′(1))

‖v′(2) − v′(1)‖2
2

(34)

This gives us the solution directly in the transformed domain,
avoiding a transform after padding, but requires one more up
front to start the recurrence. The advantage is that2n − m
multiplies are used, which might be smaller thann+m.

On average, the total cost of the best of the two methods
is 1.25n multiplies, or10 multiplies for an8-point transform,
and one division. The best algorithm for the8-point DCT,
by comparison, requires11 multiplies [14]. In this case, the
additional computation required is about half the cost of one
iteration. In practice the relative cost could be larger, ifG and
G−1 are available in dedicated hardware.

V. RESULTS

We have implemented the padding algorithms described
in an encoder for the Theora video codec [15]. Theora is a
block based codec that utilizes an8 × 8 DCT and motion
compensation.

Four different basis selection algorithms were implemented:
greedy maximization of the transform’s determinant over the
entire 2-D transform as described in Section III-A (2-D
Det) and independent maximization over row and column
transforms as described in Section III-B with respect to
three different criteria—the determinant (Det), the minimum
singular value (Min σ), and the coding gain under anAR(1)
model with correlation coefficientρ = 0.95 (Gain). For the
last three, an exhaustive search was performed over all possible
bases and a table of the optimal choice for each of the 256
different input shapes was created. A fifth selection strategy,
Kaup and Aach’s original basis selection method (KA), was
also included for comparison [9]. Where there were ties, the
first basis in the lexicographic order on the coefficient numbers
was used.

Three different algorithms were implemented to generate
the padding. The first was the direct solution of the linear
system, using the matrix multiply given in equation (11)
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(MMult), the second was the original POCS method (POCS)
[10], and the third was our accelerated POCS method given
in Section IV (POCS-A). For MMult, we did not implement
the alternative formulations given in equations (12) and (13).
Similarly, for POCS-A, we only implemented the version that
operates in the image domain, not the dual space formulation
that operates in the transform domain. Implementing these
alternative versions should increase computational efficiency,
but should not otherwise affect the results.

Any combination of basis selection and padding algorithm
can be used together, thoughKA does not require one, as
the transform coefficients are computed directly as part of the
selection strategy. Finally, as a baseline for comparisons, we
implemented the MPEG-4 padding algorithm (MPEG-4) [8].
This gives a total of fourteen available algorithms, all of which
produced bitstreams which could correctly be displayed by the
existing Theora decoder without modification.

In the interests of creating reproducible research [16],
all the code and data gathered in these experiments can
be accessed from the Xiph.org Subversion repository at
http://svn.xiph.org/experimental/derf/
theora-exp/doc/theory/padding/ . Test sequences
can be downloaded fromhttp://media.xiph.org/ .

A. Boundary Extension

The first experiment we performed was to use our algo-
rithms to pad an input source with non-standard dimensions
to a multiple of 16. Theora handles non-multiple-of-16 image
sizes by expanding the width and height to the next multiple
of 16 at the encoder, and then storing a cropping rectangle
in the header so the decoder can recover the original image
dimensions.

This form of signal extension is a special case of the fixed-
shape padding case postulated in Section III-A, where basis
selection can be done once up front. In this particular case,
the independent two-stage process we use in Section III-B is
exactly equivalent to the coupled two-stage process given in
equation (23). This is due to the fact that, for any rectangular
shape, the zeros from the row transforms will always be in the
same column, thus forcing the entire column to zero. Also, in
this case the number of possible shapes is small enough to
solve the linear system for each in advance.

For this experiment we used the standard QCIFCoast Guard
sequence. This sequence continually pans, causing a good deal
of activity around the borders—some that is easily predicted
by motion compensation, and some that is not. Sixty-three
test sequences were generated by cropping between0 and
7 pixels from the top, bottom, left, and right. The left and
right side always used the same cropping value, as did the
top and bottom. All of the test sequences were then encoded
with a constant quantizer, and the total bitrate and squared
error added up. This was repeated for all available quantizers
and for each of the four basis selection algorithms, using the
MMult algorithm to perform the padding for each chosen
basis. The same sequences were also padded with theKA
andMPEG-4algorithms for comparison. Bitrate was recorded
only for the residual DCT coefficients, and only for image

blocks which required some padding; interior blocks were
excluded. Similarly, distortion was only measured over the
support region of padded blocks.
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Fig. 5. Bitrate vs. distortion for the croppedCoast Guardsequences with
various basis selection strategies.

The results are shown in Figure 5. The performance of
all four of our basis selection algorithms are virtually in-
distinguishable, which is unsurprising as much of the time
they select the same basis for a given shape. In most cases,
1-D optimization for coding gain gives an extremely slight
advantage. At low ratesKA method gives a slight increase in
PSNR for a given quantizer, but nearly identical rate-distortion
performance. At high rates, performance drops off below that
of the other basis selection algorithms.

This suggests that full 2-D optimization of the selected
basis is in fact unnecessary, at least for rectangular shapes.
The greedy algorithm presented may still be useful for 1-D
optimization with larger transform sizes, where an exhaustive
search could prove intractable. For the small DCT used by
most video compression algorithms, however, there is no
reason not to use one of the fast basis selection algorithms.

It can also be seen that at low bitrates, theMPEG-4padding
algorithm outperforms our padding algorithms. For each quan-
tizer, our algorithms yield about a1.5 dB improvement over
MPEG-4 with the same quantizer setting, but also requires
many more bits. This indicates that our initial assumption, that
forcing zeros into the DCT coefficients will increase coding
efficiency, does not hold at low bitrates.

Part of the reason for this is that the size of the non-zero
coefficients generally increases, which both makes it more
likely a coefficient will not be quantized to zero and increases
the number of bits required to code the coefficients that are
not zero. At medium to high bitrates, the story is reversed, and
our padding algorithms are superior. Part of the advantage of
forbidding decoder modifications in our design is that we can
select the appropriate algorithm for the target bitrate.

B. Dynamic Basis Selection

The next experiment we performed was to compare the
various basis selection algorithms on dynamic shapes. For this
purpose, we ran the algorithms on a segmented version of the
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standardClaire sequence. The framerate was decimated by
5, and the remaining frames segmented into ten to fourteen
segments.

Since Theora does not yet support arbitrary shape coding,
we encode a separate sequence for each segment with a
constant quantizer. Only the blocks that belong to that shape
are coded, and for blocks on the boundary of the shape,
our shape adaptive padding is used, even though no shape
information is transmitted. Because the various foreground
objects do not keep the same segment number throughout the
video, we encode only INTRA frames. This was repeated for
all available quantizers and for each of our four basis selection
algorithms, using theMMult algorithm to perform the padding
for each chosen basis. The experiment was also run using the
KA and MPEG-4 algorithms. Bitrate and squared error error
were measured in the padding blocks as before, and summed
over all segments and all frames in the sequence.
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Fig. 6. Bitrate vs. distortion for the segmentedClaire sequence with various
basis selection strategies.

The results are shown in Figure 6. Here the picture is
quite different. This time theKA algorithm peforms the best,
though it is the second most computationally expensive. The
Gain algorithm outperforms all of our other basis selection
strategies at all bitrates by as much as1 dB or more. This
further increases the range of bitrates at which this padding
algorithm is superior toMPEG-4.

Interestingly,2-D Det is actually worse than 1-DDet and
Min σ at low bitrates, and gives only a very minor improve-
ment at high bitrates, despite being the slowest algorithm.
Initially, we chose to make a 2-D version of theDet strategy
because the formulation is simple. It might also be possible
to make a 2-D version of theGain strategy, which is clearly
superior toDet andMin σ, but these results suggest that it is
not likely to be worth the increased computation and storage
requirements.

C. POCS Acceleration

Our final experiment used the same setup as the previous
experiment. However, this time we only tested theGain basis
selection method, and varied the method of computing the
padding pixels. For both thePOCSandPOCS-Amethods, the

maximum number of iterations allowed was varied, and the
rate-distortion curve for each limit is plotted against that of
the MMult method in Figures 7 and 8.
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Fig. 7. Bitrate vs. distortion for the segmentedClaire sequence padded with
the original POCS algorithm.

As can be seen in Figure 7, the original POCS algorithm
fails to coverge to the same qualityMMult provides at high
bitrates, even after 16 iterations. This is likely due to the fact
that our implementation uses only integer operations, and the
step size becomes smaller than a single pixel value. Increasing
the precision to which pixel values are stored could resolve
this, but would also require a more accurate implementation of
the DCT transform. Even at low bitrates, it can take 8 iterations
to achieveMMult quality, while medium bitrates can require
as many as all 16.
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Fig. 8. Bitrate vs. distortion for the segmentedClaire sequence padded with
the accelerated POCS algorithm.

In Figure 8, our accelerated POCS algorithm tells a very
different story. Two iterations are sufficient to do better than all
16 iterations of the original POCS algorithm, and 3 is sufficient
to get within0.1 dB of MMult. Because the steps are larger,
integer precision is sufficient to reachMMult quality at all
bitrates. It should also be noted that although the same basis
is used for all 8 columns or rows for the second direction of
the transform, it still requires a total of 16 to 24 iterations. In
this case, it should be faster to only usePOCS-Aon the first
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direction, and useMMult for the second direction. Solving the
linear system generally requires floating point, however, which
may not be available on some hardware.

VI. CONCLUSION

We have designed a new family of padding algorithms
that can all be decoded with a standard inverse transform in
the decoder. Our experimental results demonstrate that joint
optimization of the full 2-D transform yields little or no benefit
over optimization of each stage independently. Among the 1-
D basis selection strategies, we have shown that maximizing
the coding gain gives superior rate-distortion performance at
all bitrates.

Our padding algorithms are also computationally efficient.
The decoder uses a standard non-adaptive transform, and
so can take advantage of existing fast implementations. The
total cost of the 1-D foward transform, if all of the linear
systems can be solved in advance and stored in a table, is
just min(c(G) + (m − n)m,m2) multiplies, wherec(G) is
the cost of a normal forward transform. This table is more
practical than it might at first seem. By merging duplicate
rows of coefficients and duplicate columns of row pointers,
the entire set of solutions for an 8-point DCT requires about
6.3k of ROM, and the average transform cost is only15.4
multiplies, or a40% increase over the non-shape-adaptive cost.

If the storage space for the linear system solutions is not
available, our algorithms can take advantage of customized
hardware or hand-coded assembly routines for the ordinary
DCT transform. We have presented an accelerated POCS al-
gorithm that demonstrates greatly improved convergence speed
and superior numerical accuracy without requiring floating
point operations, with only a minor additional computational
cost per iteration.

The cost of this computational efficiency is1-1.5 dB when
compared to the much more expensiveKA algorithm for the
dynamic shape case. For the boundary extension case, there
is no penalty. Our algorithms give rate-distortion performance
identical toKA. When compared against the MPEG-4 TMN 11
padding algorithm in both cases, we have demonstrated supe-
rior rate-distortion performance at medium and high bitrates,
and superior distortion performance for all quantizer settings.

Our thesis that introducing zeros into the transformed
coefficients would increase compression efficiency wasnot
validated at low bitrates, where MPEG-4 exhibited superior
rate-distortion performance. Thus, our framework does not
yield optimal padding results at all bitrates, because it does
not take into account the effects of quantization. Designing
a framework which can take these effects into account is a
subject of future work. Because our decoder uses a standard
non-adaptive inverse transform, we are free to choose the
algorithm that performs best for the target bitrate or quality and
meets our complexity requirements, and we can take advantage
of future algorithmic improvements as they become available.
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