
IETF 121
draft-ietf-mlcodec-opus-extension

8 November 2024

Draft Status

● No change since Prague

2

Repeat These Extensions Proposal

● Use case: reduce overhead of using the same extensions for multiple Opus frames in the same packet

– E.g., Hybrid Mode or CELT in 60 ms packets
● Benefits of this proposal

– Can reduce overhead even with just 1 extension appearing in 2 frames

– Savings scale with the number of frames and repeated extensions

– Applies to any extension: no extra IDs to register or SDP signaling

– Integrates well with non-repeated extensions (e.g., DRED)

– Doing it later would be a breaking change to extension parsing

● Costs

– Additional implementation complexity (entirely optional for encoder)

– Extensions for a frame no longer guaranteed to be physically contiguous 3

RTE Updates Since Vancouver

● Using RTE with L=0 with a long extension followed by short extensions can
now elide the final length, even if those short extensions have a payload

● Using RTE with L=0 and no long extensions increments the current frame
number

● Implementation at https://gitlab.xiph.org/xiph/opus/-/merge_requests/132

4

https://gitlab.xiph.org/xiph/opus/-/merge_requests/132

L=0 with Long, then Short Extensions

● Previously: the length of the final long extension was omitted if followed by zero or more
short extensions with no payload

– These extensions do not need any space, so the payload for the final long extension
was simply the rest of the packet

● Now: the length of the final long extension is omitted if followed by zero or more short
extensions, even if they have a payload

– Have to track how much space is needed for those short extension payloads

– Parsing can now fail if the implied length of the final long extension is negative

– Some condition checks slightly simpler and easier to explain

5

L=0 with Long, then Short Extensions:
Example

ID Frame Length Payload

32 0 4 “DATA”

7 0 1 “a”

32 1 5 “DATA2”

7 1 1 “b” 6

32 4 ‘D’ ‘A’ ‘T’ ‘A’ 7 ‘a’ 2 ‘D’ ‘A’ ‘T’ ‘A’ ‘2’ ‘b’

Decodes to:
L=1 L=1 L=0

15 bytes

L=0 with Only Short Extensions

● L=0 on a long extension normally takes up the rest of the packet

● After the previous change, RTE with L=0 does this if any long extension is
repeated

● But what do we do if only short extensions are repeated?

– Non-repeated extension decoding continues from the frame after the
current frame

– Can save the 1 byte cost of a frame separator in some cases

7

L=0 with Only Short Extensions:
Example

ID Frame Length Payload

7 0 1 “a”

7 1 1 “b”

32 1 4 “DATA”

8

32 ‘D’ ‘A’ ‘T’ ‘A’7 ‘a’ 2 ‘b’

Decodes to:

L=0L=1 L=0

Bitrate Savings

● Bitrate savings: (nb_repeated_extensions + 1)*(nb_frames – 1) + (up to one length) –
(frame separators needed for non-repeated extensions) – 1

● Examples with 3×20ms frames:

– 1 L=1 short extension per frame:
● Savings: 9 bytes → 6 bytes
● 200% overhead reduced to 100%

– 2 repeated extensions + DRED in the first frame:
● Savings: 2 frame separators + 4 extension IDs + DRED length – RTE byte
● Total: 6 bytes / packet or 800 bps 9

Code Complexity

if (iter->repeat_frame > 0) {

 /* We are in the process of repeating some extensions. */

 for (;iter->repeat_frame < iter->nb_frames; iter->repeat_frame++) {

 while (iter->src_len > 0) {

 const unsigned char *curr_data0;

 int repeat_id_byte;

 repeat_id_byte = *iter->src_data;

 iter->src_len = skip_extension(&iter->src_data, iter->src_len,

 &header_size);

 /* We skipped this extension earlier, so it should not fail now. */

 celt_assert(iter->src_len >= 0);

 /* Don't repeat padding. */

 if (repeat_id_byte <= 1) continue;

 /* If the "Repeat These Extensions" extension had L == 0 and this

 is the last repeated long extension, then force decoding the

 payload with L = 0. */

 if (iter->repeat_l == 0

 && iter->repeat_frame + 1 >= iter->nb_frames

 && iter->src_data == iter->last_long) {

 repeat_id_byte &= ~1;

 } 10

 curr_data0 = iter->curr_data;

 iter->curr_len = skip_extension_payload(&iter->curr_data,

 iter->curr_len, &header_size, repeat_id_byte,

 iter->trailing_short_len);

 if (iter->curr_len < 0) {

 return OPUS_INVALID_PACKET;

 }

 celt_assert(iter->curr_data - iter->data

 == iter->len - iter->curr_len);

 /* If we were asked to stop at frame_max, skip extensions for later

 frames. */

 if (iter->repeat_frame >= iter->frame_max) {

 continue;

 }

 if (ext != NULL) {

 ext->id = repeat_id_byte >> 1;

 ext->frame = iter->repeat_frame;

 ext->data = curr_data0 + header_size;

 ext->len = iter->curr_data - curr_data0 - header_size;

 }

 return 1;

 }

 /* We finished repeating the extensions for this frame. */

 iter->src_data = iter->repeat_data;

 iter->src_len = iter->repeat_len;

 }

 /* We finished repeating extensions. */

 iter->repeat_data_end = iter->repeat_data = iter->curr_data;

 /* If L == 0, advance the frame number to handle the case where we did

 not consume all of the data with an L == 0 long extension. */

 if (iter->repeat_l == 0) {

 iter->curr_frame++;

 /* Ignore additional padding if this was already the last frame. */

 if (iter->curr_frame >= iter->nb_frames) {

 iter->curr_len = 0;

 }

 }

 iter->repeat_frame = 0;

}

Questions?

● How do we get more reviews and feedback?

11

Opus Extension Format

1
2

TOC Byte
(code 3)

Frame
Count Byte

Padding Bit

Padding Length
(variable) Compressed

Opus Frames

Padding
(extensions go here)

Opus Frame
Length(s)

ID #1
Length for ID=32...127,

L=1 (variable)

L Flag Extension Payload

ID #2...

Extensions for Frame 0

Separator
(ID=1)

Frame Increment
(optional)Extensions for Frame 1

Separator
(ID=1)

Etc.

	IETF 117 Session title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

