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Caveats
● These are just ideas
● We have not started working on any of them
● We don’t know if any of them will work

– If we knew what we were doing, it wouldn’t be 
research

● They’re not a complete list
– Just some of the more thought-out ideas
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Entropy Coding
● AV1 moved to “multi-symbol arithmetic coding”

– Otherwise known as regular arithmetic coding, since 1979
– Goal was to increase hardware throughput

● More values per symbol → fewer symbols → lower clock rates 
(at the cost of a reasonable area increase)

– Also helps software
● Cost of coding a symbol dominated by overhead, not 

arithmetic
● SIMD can also parallelize the arithmetic

● How can we move this forward in AV2?
– In ways that do not add a lot of complexity!
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Alphabet Size
● AV1 supports alphabet sizes up to 16
● But the majority of symbols use no more than 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Percent of Symbols by Alphabet Size

Chimera

Dua Lipa

Morocco

Alphabet Size



Mozilla5 

Larger Alphabets
● Look for ways to increase alphabet sizes

– “Clean-up work” that we did not get to in AV1
– Not always trivial to merge symbols, as adjacent 

symbols may have different contexts
● Exterior product of combinations explodes table sizes
● Need to evaluate if all contexts pay for themselves

● Daala was able to have zero (0) binary contexts
– Same can be true for AV2!
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Learning Rate
● AV1’s CDF update learning rate is based on

– The number of symbols coded in a given context in 
the current tile

● Three bands: 0...15, 16...31, 32+

– The number of symbols in the CDF (large 
alphabets adapt more slowly)

● Simple approximation of dynamic learning rates 
of frequency counts

● Assumes all contexts are equally stationary
– This is definitely not true
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Improvements to Learning Rate
● Make learning rates symbol/context-specific 

(trained offline)
● Adapt learning rates dynamically

– Code a low-probability value: start learning much 
faster

– Code a high-probability value: start learning 
slightly slower

– Picking thresholds for low/high in a multi-symbol 
world is an interesting problem!
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Context Dilution
● What is the cost of adaptation in adaptive 

entropy coding?
– Learning probabilities adds (roughly) log(N) bits 

of overhead per Degree Of Freedom (DOF) to 
code N symbols

● Assumes a static distribution... doesn’t count the cost 
of re-learning if the distribution changes

● How does the number of contexts impact this?
– Lots of contexts means few symbols per context: 

context dilution
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Context Dilution
● Larger contexts amortize learning overhead

– Need 1000 symbols per DOF to get under 1%
● Gain from better modeling must offset overhead
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Static Context Merging
● Number of contexts in AV1 is completely fixed
● But number of symbols depends on resolution and bitrate… a lot

– Current tradeoff cannot always be optimal
● We can merge contexts by adding a level of indirection

– E.g., if the context is a ‘block size’, multiple block sizes can point to the same 
underlying CDF

– Mappings can be parameterized by tile size and/or QP
– If mapping is static per frame/tile, should be okay for hardware?

● Bitrate is also content-specific
– Fast motion/poorly predicted content has lots more symbols
– Also different for different frames in the prediction structure

● Partially captured by QP, but temporal distance between frames matters, too

– Allow encoder to signal amount of merging?
● How does it know? Almost same problem as rate control

● Challenge: we lose differentiation in initial probabilities
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Adaptive Context Splitting
● Can work in the other direction (prior art: FLIF)

– Start by mapping all contexts for a given symbol to the same CDF
– Once some number of values is coded with a CDF, ‘split’ it

● Copy to multiple independent CDFs (distinguished by context)
● Repeat as more symbols are coded until using whole context

● Advantage:
– Automatic (adapts to resolution, QP, content, etc.)

● Disadvantages:
– Increased complexity

● Splitting should be rare in software, how bad is it for hardware?

– Also loses differentiation in initial probabilities
● Re-differentiate when we split? 

– How to propagate CDFs to future frames?
● Can propagate splitting state, but is this optimal for a new frame?
● May be an interesting idea even if restricted to intra frames?
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Reduce DOFs per Context
● In addition to reducing context count, we can also reduce 

Degrees Of Freedom (DOFs)
● If you have worked with CABAC-based codecs, the 

following structures should be familiar:

● 8 possible values with 3 DOF instead of 7
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Cumulative Distribution 
Functions (CDFs)

● In a multi-symbol world, we store probabilities as “Cumulative Distribution 
Functions” (CDFs)

– I.e., the sum of the probabilities of all symbols less than a given symbol
– Technically we store 1.0 - the CDF, or the “inverse CDF”, to save a subtraction while 

collecting rounding errors in the zero symbol
● CDFs are updated as the weighted average of the current CDF, cur_cdf[i], and an 

elementary basis CDF, cdf_e[k][i], for the coded symbol k
– cdf_e[k][i] = 0.0 (i < k) or 1.0 (i ≥ k)

● Something interesting happened at the end of AV1 development
– Initially had a complex mechanism to prevent probabilities going to zero during update
– When we adopted lv_map, we reduced the precision of the arithmetic coder’s multiply to 

compensate for the increased symbol rate in hardware
– That required dropping the low-order bits of the probabilities

● But it still helped to adapt probabilities with 15 bits of precision

– So we devised a way to enforce a minimum amount of code space for each value in the 
arithmetic coding engine itself

– Which means we are now free to update CDFs in any arbitrary way we like
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Reduce DOFs with CDFs
● How can we replicate the simplified CABAC structure with CDFs?
● Current CDF update is equivalent to a weighted average of PDFs

– pdf_e[k][i] = 0.0 (i ≠ k) or 1.0 (i = k)
● Can replace pdf_e[k] with sums and differences of only 3 basis 

vectors
● E.g., pdf_e[0] might be

  {1,1,1,1,0,0,0,0}/12.0

+ {1,1,0,0,1,1,0,0}/12.0

+ {1,0,1,0,1,0,1,0}/12.0

  {3,2,2,1,2,1,1,0}/12.0
● All PDFs are linear combinations of these three PDFs or their inverses

– 3 DOF instead of 7
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Reduce DOFs with CDFs
● No need to ape binary context models

– How do we train a model from data?
● Standard dimensionality reduction techniques (PCA, ICA, NMF)

● Software complexity: almost free
– Pre-compute cdf_e[k] for each model, look up during SIMD 

update (just swap in different pointer)
– Small cache penalty if we have a lot of models

● Hardware complexity:
– Depends on the number of models

● Would want to used trained models for contexts
– That are used a lot (e.g., coefficient coding), or
– Where the same model can be reused for many contexts
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Parametric CDFs
● Some contexts well-approximated by parametric distributions 

with 1 or 2 DOF
– Laplace, etc.

● Must re-compute distribution after each update
– Potentially okay for hardware if it can be pipelined with other 

symbols
– Challenge for software depends on the distribution

● Could imagine this for the long tail of a coefficient coder
– Easy to make strong distribution assumptions
– Relatively infrequently used contexts

● CDF update cost not that problematic (need to watch out for worst case!)
● Benefit from reducing DOF relatively large
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Raw Bits
● AV1 includes a “bit literal” similar in spirit to CABAC’s bypass mode

– Nearly as expensive as full arithmetic coder in software
– Much cheaper than full arithmetic coder in hardware (can process more bits/clock)

● Coding actual bit literals would be much better for software
– Coding dozens of bits costs the same as coding one, and much less than arithmetic coding

● Solution from Daala: pack raw bits starting from the end of each packet
– Essentially two “read pointers” from either end of the buffer that meet in the middle

● Costs one partial buffer copy during encode
– Don’t know packet size in advance, so need to maintain two buffers and merge them

● Challenge: DRM encryption
– No problems in CTR mode? (can encrypt/decrypt in any order)
– Decryption is okay in CBC mode, but encryption must be done in-order

● Potential to use raw bits a lot more (e.g., in coefficient coding) if they can be made 
really cheap

● Is this an acceptable trade-off for hardware?
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Entropy Coding Considerations
● When to do this work?

– Refactoring tools to use larger alphabets, lower DOF models, etc., might get obsoleted 
by/need to be repeated for new tools

– Optimizing context merging, per-context learning rates, etc., may change a lot as the 
codec changes

● Can we automate this process enough to repeat it periodically as the codec evolves?

● Overfitting concerns
– There are a lot of free parameters here

● Context mappings for multiple bitrates, learning rates for each context, basis vectors for DOF 
reduction, etc.

– Need to use large training sets, lots of encoder configurations, cross-validation, etc., to 
make sure we generalize sufficiently 

● Implementation generalization concerns
– Different encoders or encoder configurations may behave very differently
– How does propagating probabilities through the prediction structure influence results?
– Interactions with RDO
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Quantization Rework (1)
● Increase precision of tables

– Minimum step size is too large, especially for 8-bit
● Make tables uniformly exponential

– Existing tables have a large linear section because of the 
minimum step size

● Eliminate AC/DC offsets?
– This is the role of quantization matrices
– Cannot have truly flat quantization over the whole range

● AC/DC values can’t be made to match past a certain point
● DC quantizer range much smaller

– Current design is not documented, so unsure how to evaluate
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Quantization Rework (2)
● Rebalance per-plane offsets

– Per-plane weighting managed differently in various parts of libaom’s RDO
– Should have defaults that are consistent and match human vision

● And handle 4:2:2 and 4:4:4 properly!

● Allow per-plane segment offsets
– Currently impossible to locally boost all planes uniformly (because of the 

non-uniform tables), or luma only, etc.
● Extend table range?
● Changing the bitstream is easy, updating the encoder is hard

– Many encoder tunings are based on QP
– Changing what QP means requires understanding and reworking them all
– libaom stuck in heavily-tuned local minimum
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Frame Border Handling
● AV1 has many complicated special cases to deal with frames 

that are not a multiple of the superblock size
– Which is basically every useful resolution

● Some really bizarre stuff
– Partition size CDFs that are computed/updated unlike any others
– Ragged partition sizes on the right/bottom edge
– Intra prediction pixel availability for pixels outside coded region 

despite having no MI blocks out there (also CfL)
– Loop filter rules that are different for every filter

● A burden on every implementer that slows down adoption
– We’ve seen multiple encoders always split down partitions on the 

frame border to avoid many of these issues
– Decoders are not so lucky!
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simple_crop
● Simpler approach:

– Pad coded frame size to whole superblocks
– Crop down to the visible region for display

● Already doing this at the 8x8 level in AV1

– Make it the encoder’s job to code outside the visible region in cheapest way
● Set prediction residual to zero outside visible region for every prediction candidate 

during RDO
– I.e., the “padding” values of the input frame are just whatever the prediction will be

● Moves all complexity to the encoder
– Only need special cases for making decisions
– Removes all special cases for syntax and semantics

● Still room for some simple special cases in decoder
– Anywhere you can replace a whole symbol by a hardcoded value
– E.g., assuming SKIP/NOSPLIT for blocks outside the visible region
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simple_crop
● Tried this for AV1, but ran into implementation issues in libaom

– Motion estimation uses tables of function pointers to SIMD routines 
with hard-coded block sizes to evaluate match error

– Can’t even plumb custom sizes through most of the code
– Fixing this requires refactoring basically the entire motion search

● Best result obtained while ignoring those problems was a 
0.2% BDR loss

– No one was interested in taking a BDR hit to reduce 
implementation complexity

● Even though 0.2% is a lot smaller than the hit from always splitting down 
near frame borders! (1.5%...2.5% in rav1e)

– Perhaps now opinions are different?
– Results were for 64x64 superblocks, hit could be larger for 128x128
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daala_tx
● Highly efficient, highly accurate factorized 

trigonometric transforms
● https://github.com/negge/daala_tx
● https://aomedia-review.googlesource.com/c/ao

m/+/37521/
● Not adopted for AV1 due to a strong preference 

from hardware to reuse as much of the VP9 
transforms as possible

● Worth reconsidering for AV2?

https://github.com/negge/daala_tx
https://aomedia-review.googlesource.com/c/aom/+/37521/
https://aomedia-review.googlesource.com/c/aom/+/37521/
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Incontinent Horse Problem
● With iterative intra prediction over small blocks

– DC resolution is much coarser than with large blocks
– Errors uncorrected as prediction extends to large areas
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Haar DC
● Solution: Apply a Haar transform to DC coefficients

– Each level of 2D Haar reduces the size of a DC quantization 
step by a factor of 2 (in pixel units)

– Allows much smaller global shifts over large areas
● New problem

– Need prediction residual to compute DC, but…
● Need quantized DCs of neighbors to compute prediction, but…

– Need DC to transform and quantize with neighbors, but...

– DC term is fairly separable though
● Were able to get something workable with Daala
● Maybe possible to do the same with AV2?

● Fewer DC coefficients is also generally a good idea
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Edge Directed Interpolation
● Lots of research into nonlinear interpolation

– Can do better than linear filters, but expensive
– Based on assumptions about natural images

From A. Giachetti and N. 
Asuni: “Real-Time Artifact-
Free Image Upscaling.” IEEE 
Transactions on Image 
Processing, 20(10):2760–
2768, Oct. 2011.
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Edge Directed Subpel
● Tried this with Daala, but got poor results, even with expensive filters
● Working on CDEF gave us a clue why

– Adding quantization noise makes per-pixel local orientation estimates unreliable
– Needed to go up to 8x8 blocks to get reliable local orientation

● New proposed subpel mode
– Use CDEF direction search on 8x8 blocks in the reference frame (offset by MV)
– Apply long(er) interpolation filter in the identified primary direction
– Apply a filter with compact support in the cross direction

● Expected benefits
– Reduced ringing near edges in subpel motion, more SKIP usage

● CDEF can clean up existing ringing, but only if you don’t SKIP

● Complexity
– Re-uses highly optimized CDEF direction search (very cheap)
– Actual filtering almost the same as existing subpel with slight pointer offsets
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Inter Chroma from Luma (CfL)
● Goal: extend the very successful intra CfL to inter frames
● Inter predict luma plane, code residual like normal
● Build a linear model of chroma from luma based on the 

reference frame pixels used for prediction
● Predict the chroma residual from the luma residual

– Added on top of the inter chroma prediction
● Not our idea: original idea from Cisco in Thor

– draft-midtskogen-netvc-chromapred-02
● TODO: For Intra CfL, signaling the linear model was more 

reliable than building it from the prediction
– What is the best way to harmonize the two approaches for inter?

https://tools.ietf.org/html/draft-midtskogen-netvc-chromapred-02
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Summary
● Large scale/systemic changes

– Lots of potential entropy encoder improvements
● Learning rates, alphabet sizes, context dilution/DOFs, raw bits

– Many quantization improvements
● Table precision/uniformity, AC/DC offsets, plane offsets, per-plane 

segment offsets, table range

● Old tools
– simple_crop
– daala_tx

● New tools
– Haar DC
– Edge Directed Subpel
– Inter CfL
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Questions?
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