
Mozilla

Potential AV2 Research
Directions

Mozilla2

Caveats
● These are just ideas
● We have not started working on any of them
● We don’t know if any of them will work

– If we knew what we were doing, it wouldn’t be
research

● They’re not a complete list
– Just some of the more thought-out ideas

Mozilla3

Entropy Coding
● AV1 moved to “multi-symbol arithmetic coding”

– Otherwise known as regular arithmetic coding, since 1979
– Goal was to increase hardware throughput

● More values per symbol → fewer symbols → lower clock rates
(at the cost of a reasonable area increase)

– Also helps software
● Cost of coding a symbol dominated by overhead, not

arithmetic
● SIMD can also parallelize the arithmetic

● How can we move this forward in AV2?
– In ways that do not add a lot of complexity!

Mozilla4

Alphabet Size
● AV1 supports alphabet sizes up to 16
● But the majority of symbols use no more than 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Percent of Symbols by Alphabet Size

Chimera

Dua Lipa

Morocco

Alphabet Size

Mozilla5

Larger Alphabets
● Look for ways to increase alphabet sizes

– “Clean-up work” that we did not get to in AV1
– Not always trivial to merge symbols, as adjacent

symbols may have different contexts
● Exterior product of combinations explodes table sizes
● Need to evaluate if all contexts pay for themselves

● Daala was able to have zero (0) binary contexts
– Same can be true for AV2!

Mozilla6

Learning Rate
● AV1’s CDF update learning rate is based on

– The number of symbols coded in a given context in
the current tile

● Three bands: 0...15, 16...31, 32+

– The number of symbols in the CDF (large
alphabets adapt more slowly)

● Simple approximation of dynamic learning rates
of frequency counts

● Assumes all contexts are equally stationary
– This is definitely not true

Mozilla7

Improvements to Learning Rate
● Make learning rates symbol/context-specific

(trained offline)
● Adapt learning rates dynamically

– Code a low-probability value: start learning much
faster

– Code a high-probability value: start learning
slightly slower

– Picking thresholds for low/high in a multi-symbol
world is an interesting problem!

Mozilla8

Context Dilution
● What is the cost of adaptation in adaptive

entropy coding?
– Learning probabilities adds (roughly) log(N) bits

of overhead per Degree Of Freedom (DOF) to
code N symbols

● Assumes a static distribution... doesn’t count the cost
of re-learning if the distribution changes

● How does the number of contexts impact this?
– Lots of contexts means few symbols per context:

context dilution

Mozilla9

Context Dilution
● Larger contexts amortize learning overhead

– Need 1000 symbols per DOF to get under 1%
● Gain from better modeling must offset overhead

Number of Symbols per DOFLe
ar

ni
ng

 O
ve

rh
ea

d
(b

its
/s

ym
)

Mozilla10

Static Context Merging
● Number of contexts in AV1 is completely fixed
● But number of symbols depends on resolution and bitrate… a lot

– Current tradeoff cannot always be optimal
● We can merge contexts by adding a level of indirection

– E.g., if the context is a ‘block size’, multiple block sizes can point to the same
underlying CDF

– Mappings can be parameterized by tile size and/or QP
– If mapping is static per frame/tile, should be okay for hardware?

● Bitrate is also content-specific
– Fast motion/poorly predicted content has lots more symbols
– Also different for different frames in the prediction structure

● Partially captured by QP, but temporal distance between frames matters, too

– Allow encoder to signal amount of merging?
● How does it know? Almost same problem as rate control

● Challenge: we lose differentiation in initial probabilities

Mozilla11

Adaptive Context Splitting
● Can work in the other direction (prior art: FLIF)

– Start by mapping all contexts for a given symbol to the same CDF
– Once some number of values is coded with a CDF, ‘split’ it

● Copy to multiple independent CDFs (distinguished by context)
● Repeat as more symbols are coded until using whole context

● Advantage:
– Automatic (adapts to resolution, QP, content, etc.)

● Disadvantages:
– Increased complexity

● Splitting should be rare in software, how bad is it for hardware?

– Also loses differentiation in initial probabilities
● Re-differentiate when we split?

– How to propagate CDFs to future frames?
● Can propagate splitting state, but is this optimal for a new frame?
● May be an interesting idea even if restricted to intra frames?

Mozilla12

Reduce DOFs per Context
● In addition to reducing context count, we can also reduce

Degrees Of Freedom (DOFs)
● If you have worked with CABAC-based codecs, the

following structures should be familiar:

● 8 possible values with 3 DOF instead of 7

0 1

0 1

0 10000 1111

00 11

0 1

Mozilla13

Cumulative Distribution
Functions (CDFs)

● In a multi-symbol world, we store probabilities as “Cumulative Distribution
Functions” (CDFs)

– I.e., the sum of the probabilities of all symbols less than a given symbol
– Technically we store 1.0 - the CDF, or the “inverse CDF”, to save a subtraction while

collecting rounding errors in the zero symbol
● CDFs are updated as the weighted average of the current CDF, cur_cdf[i], and an

elementary basis CDF, cdf_e[k][i], for the coded symbol k
– cdf_e[k][i] = 0.0 (i < k) or 1.0 (i ≥ k)

● Something interesting happened at the end of AV1 development
– Initially had a complex mechanism to prevent probabilities going to zero during update
– When we adopted lv_map, we reduced the precision of the arithmetic coder’s multiply to

compensate for the increased symbol rate in hardware
– That required dropping the low-order bits of the probabilities

● But it still helped to adapt probabilities with 15 bits of precision

– So we devised a way to enforce a minimum amount of code space for each value in the
arithmetic coding engine itself

– Which means we are now free to update CDFs in any arbitrary way we like

Mozilla14

Reduce DOFs with CDFs
● How can we replicate the simplified CABAC structure with CDFs?
● Current CDF update is equivalent to a weighted average of PDFs

– pdf_e[k][i] = 0.0 (i ≠ k) or 1.0 (i = k)
● Can replace pdf_e[k] with sums and differences of only 3 basis

vectors
● E.g., pdf_e[0] might be

 {1,1,1,1,0,0,0,0}/12.0

+ {1,1,0,0,1,1,0,0}/12.0

+ {1,0,1,0,1,0,1,0}/12.0

 {3,2,2,1,2,1,1,0}/12.0
● All PDFs are linear combinations of these three PDFs or their inverses

– 3 DOF instead of 7

Mozilla15

Reduce DOFs with CDFs
● No need to ape binary context models

– How do we train a model from data?
● Standard dimensionality reduction techniques (PCA, ICA, NMF)

● Software complexity: almost free
– Pre-compute cdf_e[k] for each model, look up during SIMD

update (just swap in different pointer)
– Small cache penalty if we have a lot of models

● Hardware complexity:
– Depends on the number of models

● Would want to used trained models for contexts
– That are used a lot (e.g., coefficient coding), or
– Where the same model can be reused for many contexts

Mozilla16

Parametric CDFs
● Some contexts well-approximated by parametric distributions

with 1 or 2 DOF
– Laplace, etc.

● Must re-compute distribution after each update
– Potentially okay for hardware if it can be pipelined with other

symbols
– Challenge for software depends on the distribution

● Could imagine this for the long tail of a coefficient coder
– Easy to make strong distribution assumptions
– Relatively infrequently used contexts

● CDF update cost not that problematic (need to watch out for worst case!)
● Benefit from reducing DOF relatively large

Mozilla17

Raw Bits
● AV1 includes a “bit literal” similar in spirit to CABAC’s bypass mode

– Nearly as expensive as full arithmetic coder in software
– Much cheaper than full arithmetic coder in hardware (can process more bits/clock)

● Coding actual bit literals would be much better for software
– Coding dozens of bits costs the same as coding one, and much less than arithmetic coding

● Solution from Daala: pack raw bits starting from the end of each packet
– Essentially two “read pointers” from either end of the buffer that meet in the middle

● Costs one partial buffer copy during encode
– Don’t know packet size in advance, so need to maintain two buffers and merge them

● Challenge: DRM encryption
– No problems in CTR mode? (can encrypt/decrypt in any order)
– Decryption is okay in CBC mode, but encryption must be done in-order

● Potential to use raw bits a lot more (e.g., in coefficient coding) if they can be made
really cheap

● Is this an acceptable trade-off for hardware?

Mozilla18

Entropy Coding Considerations
● When to do this work?

– Refactoring tools to use larger alphabets, lower DOF models, etc., might get obsoleted
by/need to be repeated for new tools

– Optimizing context merging, per-context learning rates, etc., may change a lot as the
codec changes

● Can we automate this process enough to repeat it periodically as the codec evolves?

● Overfitting concerns
– There are a lot of free parameters here

● Context mappings for multiple bitrates, learning rates for each context, basis vectors for DOF
reduction, etc.

– Need to use large training sets, lots of encoder configurations, cross-validation, etc., to
make sure we generalize sufficiently

● Implementation generalization concerns
– Different encoders or encoder configurations may behave very differently
– How does propagating probabilities through the prediction structure influence results?
– Interactions with RDO

Mozilla19

Quantization Rework (1)
● Increase precision of tables

– Minimum step size is too large, especially for 8-bit
● Make tables uniformly exponential

– Existing tables have a large linear section because of the
minimum step size

● Eliminate AC/DC offsets?
– This is the role of quantization matrices
– Cannot have truly flat quantization over the whole range

● AC/DC values can’t be made to match past a certain point
● DC quantizer range much smaller

– Current design is not documented, so unsure how to evaluate

Mozilla20

Quantization Rework (2)
● Rebalance per-plane offsets

– Per-plane weighting managed differently in various parts of libaom’s RDO
– Should have defaults that are consistent and match human vision

● And handle 4:2:2 and 4:4:4 properly!

● Allow per-plane segment offsets
– Currently impossible to locally boost all planes uniformly (because of the

non-uniform tables), or luma only, etc.
● Extend table range?
● Changing the bitstream is easy, updating the encoder is hard

– Many encoder tunings are based on QP
– Changing what QP means requires understanding and reworking them all
– libaom stuck in heavily-tuned local minimum

Mozilla21

Frame Border Handling
● AV1 has many complicated special cases to deal with frames

that are not a multiple of the superblock size
– Which is basically every useful resolution

● Some really bizarre stuff
– Partition size CDFs that are computed/updated unlike any others
– Ragged partition sizes on the right/bottom edge
– Intra prediction pixel availability for pixels outside coded region

despite having no MI blocks out there (also CfL)
– Loop filter rules that are different for every filter

● A burden on every implementer that slows down adoption
– We’ve seen multiple encoders always split down partitions on the

frame border to avoid many of these issues
– Decoders are not so lucky!

Mozilla22

simple_crop
● Simpler approach:

– Pad coded frame size to whole superblocks
– Crop down to the visible region for display

● Already doing this at the 8x8 level in AV1

– Make it the encoder’s job to code outside the visible region in cheapest way
● Set prediction residual to zero outside visible region for every prediction candidate

during RDO
– I.e., the “padding” values of the input frame are just whatever the prediction will be

● Moves all complexity to the encoder
– Only need special cases for making decisions
– Removes all special cases for syntax and semantics

● Still room for some simple special cases in decoder
– Anywhere you can replace a whole symbol by a hardcoded value
– E.g., assuming SKIP/NOSPLIT for blocks outside the visible region

Mozilla23

simple_crop
● Tried this for AV1, but ran into implementation issues in libaom

– Motion estimation uses tables of function pointers to SIMD routines
with hard-coded block sizes to evaluate match error

– Can’t even plumb custom sizes through most of the code
– Fixing this requires refactoring basically the entire motion search

● Best result obtained while ignoring those problems was a
0.2% BDR loss

– No one was interested in taking a BDR hit to reduce
implementation complexity

● Even though 0.2% is a lot smaller than the hit from always splitting down
near frame borders! (1.5%...2.5% in rav1e)

– Perhaps now opinions are different?
– Results were for 64x64 superblocks, hit could be larger for 128x128

Mozilla24

daala_tx
● Highly efficient, highly accurate factorized

trigonometric transforms
● https://github.com/negge/daala_tx
● https://aomedia-review.googlesource.com/c/ao

m/+/37521/
● Not adopted for AV1 due to a strong preference

from hardware to reuse as much of the VP9
transforms as possible

● Worth reconsidering for AV2?

https://github.com/negge/daala_tx
https://aomedia-review.googlesource.com/c/aom/+/37521/
https://aomedia-review.googlesource.com/c/aom/+/37521/

Mozilla25

Incontinent Horse Problem
● With iterative intra prediction over small blocks

– DC resolution is much coarser than with large blocks
– Errors uncorrected as prediction extends to large areas

Mozilla26

Haar DC
● Solution: Apply a Haar transform to DC coefficients

– Each level of 2D Haar reduces the size of a DC quantization
step by a factor of 2 (in pixel units)

– Allows much smaller global shifts over large areas
● New problem

– Need prediction residual to compute DC, but…
● Need quantized DCs of neighbors to compute prediction, but…

– Need DC to transform and quantize with neighbors, but...

– DC term is fairly separable though
● Were able to get something workable with Daala
● Maybe possible to do the same with AV2?

● Fewer DC coefficients is also generally a good idea

Mozilla27

Edge Directed Interpolation
● Lots of research into nonlinear interpolation

– Can do better than linear filters, but expensive
– Based on assumptions about natural images

From A. Giachetti and N.
Asuni: “Real-Time Artifact-
Free Image Upscaling.” IEEE
Transactions on Image
Processing, 20(10):2760–
2768, Oct. 2011.

Mozilla28

Edge Directed Subpel
● Tried this with Daala, but got poor results, even with expensive filters
● Working on CDEF gave us a clue why

– Adding quantization noise makes per-pixel local orientation estimates unreliable
– Needed to go up to 8x8 blocks to get reliable local orientation

● New proposed subpel mode
– Use CDEF direction search on 8x8 blocks in the reference frame (offset by MV)
– Apply long(er) interpolation filter in the identified primary direction
– Apply a filter with compact support in the cross direction

● Expected benefits
– Reduced ringing near edges in subpel motion, more SKIP usage

● CDEF can clean up existing ringing, but only if you don’t SKIP

● Complexity
– Re-uses highly optimized CDEF direction search (very cheap)
– Actual filtering almost the same as existing subpel with slight pointer offsets

Mozilla29

Inter Chroma from Luma (CfL)
● Goal: extend the very successful intra CfL to inter frames
● Inter predict luma plane, code residual like normal
● Build a linear model of chroma from luma based on the

reference frame pixels used for prediction
● Predict the chroma residual from the luma residual

– Added on top of the inter chroma prediction
● Not our idea: original idea from Cisco in Thor

– draft-midtskogen-netvc-chromapred-02
● TODO: For Intra CfL, signaling the linear model was more

reliable than building it from the prediction
– What is the best way to harmonize the two approaches for inter?

https://tools.ietf.org/html/draft-midtskogen-netvc-chromapred-02

Mozilla30

Summary
● Large scale/systemic changes

– Lots of potential entropy encoder improvements
● Learning rates, alphabet sizes, context dilution/DOFs, raw bits

– Many quantization improvements
● Table precision/uniformity, AC/DC offsets, plane offsets, per-plane

segment offsets, table range

● Old tools
– simple_crop
– daala_tx

● New tools
– Haar DC
– Edge Directed Subpel
– Inter CfL

Mozilla31

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

