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Abstract Formulas for incremental or parallel computation of second order central
moments have long been known, and recent extensions of these formulas to univariate
and multivariate moments of arbitrary order have been developed. Such formulas
are of key importance in scenarios where incremental results are required and in
parallel and distributed systems where communication costs are high.We survey these
recent results, and improve them with arbitrary-order, numerically stable one-pass
formulas which we further extend with weighted and compound variants. We also
develop a generalized correction factor for standard two-pass algorithms that enables
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the maintenance of accuracy over nearly the full representable range of the input,
avoiding the need for extended-precision arithmetic. We then empirically examine
algorithmcorrectness for pairwise update formulas up to order four aswell as condition
number and relative error bounds for eight different central moment formulas, each
up to degree six, to address the trade-offs between numerical accuracy and speed of
the various algorithms. Finally, we demonstrate the use of the most elaborate among
the above mentioned formulas, with the utilization of the compound moments for a
practical large-scale scientific application.

Keywords Descriptive statistics · Statistical moments · Parallel computing · Large
data analysis

1 Introduction

Central moments, including the variance, and derived quantities like skewness and
kurtosis, are some of the most widely used tools in descriptive statistics. However,
standard approaches for computing them, reviewed in Sect. 2, either require two passes
over the data, or are grossly inaccurate for data that is not contained within a very
limited range. This poses a problem in streaming settings where incremental results
are needed after each new value is observed, and for very large datasets, which may
not fit in available memory, and increasingly are distributed over a number of hosts.
The prevalence of large, distributed data sets has lead to the recent development of new
statistical packages to analyze them, cf.Wylie et al. (2008),Wong et al. (2008), Bennett
et al. (2009), Pébay et al. (2010, 2011), Eddelbuettel (2010), Schmidberger et al.
(2009), Stata (2010). In this setting the cost of distributedmemory access is so large that
two-pass algorithms become entirely impractical. Even a single machine increasingly
performs large parallel computations on a Graphics Processing Unit (GPU), where
memory bandwidth is a significant bottleneck. Using two passes doubles the execution
time, and using double precision arithmetic doubles it again, almost irrespective of
the number of arithmetic operations performed in each pass.

For the second central moment (the variance), accurate, one-pass, incremental
approaches have long been known, e.g. Welford (1962), Neely (1966), West (1979).
Chan et al. (1979) generalized them into a “pairwise algorithm”, which computes the
variance of a set by partitioning it into two subsets, computing their second order sta-
tistics recursively, and then combining themwith an updating rule to obtain the second
order statistics of the whole set. Constraining the second set to be a singleton yields an
efficient incremental (on-line) algorithm. Alternatively, using subsets of roughly equal
size yields a highly parallel algorithm. The latter also ensures intermediate terms will
be commensurate, increasing accuracy by preventing destructive underflow. Incre-
mental formulas for cumulants up to fourth order have been proposed for a zero-mean
process, cf. Amblard and Brossier (1995), Dembélé and Favier (1998). Ensuring a
zero-mean process involves removing a mean estimated from the data, which tradi-
tionally requires a two-pass algorithm, eliminating the benefit of a recursive update
formula.
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Numerically stable, scalable formulas for parallel. . . 1307

In Bennett et al. (2009), we generalized the variance calculation approach of Chan
et al. (1979) to moments of arbitrary order, and formulas for incremental and pair-
wise algorithms were provided. These formulas are particularly useful as a number of
applications of higher order moments require on-line updates or parallel processing.
For instance, many communications applications use both univariate (Mendel 1991)
and multivariate (Nikias and Mendel 1993) moments up to fourth order—or cumu-
lants, which are frequently computed from the central moments. These include blind
deconvolution (Shalvi and Weinstein 1990), blind source separation (Tugnait 1997),
direction finding (Porat and Friedlander 1991), and speech detection (Nemer et al.
2001), all of which can benefit from on-line updates to adapt to changing channel con-
ditions and minimize delay. Image processing also makes frequent use of higher-order
moments for modeling non-linear distortions, with applications in deblurring (Xu and
Crebbin 1996; Ibrahim et al. 1998; Wang et al. 2006), noise removal (Kleihorst et al.
1997), gamma correction and radial distortion estimation (Farid and Popescu 2001),
and steganalysis (Lyu and Farid 2002). Skewness and kurtosis are also commonly used
in financial modeling (Samuelson 1970; Harvey and Siddique 2000), where datasets
are so large that distributed processing is required. Although examples are less com-
mon, moments up to sixth order can aid chromatic dispersion compensation in long
distance fiber-optic lines (Kikuchi et al. 2005), and eighth-order moments provide a
means to identify cell phonemodulation schemes (Prakasam andMadheswaran 2008),
to name a few. In this paper we further expand these formulas to a variety of other
extensions: weighted moments, forgetting schemes, and compound moments. Com-
pound moments have important applications for turbulent flow analysis (Jones 1993)
and we demonstrate their application in this setting.

As the order of the moment increases, even the venerable two-pass algorithm may
be inaccurate, as the numerical error for evaluating polynomials around the mean
grows exponentially with the degree. When communication costs are the bottleneck,
doubling the working precision doubles the computation time. Alternatives, such as
compensation algorithms for summation (Ogita et al. 2005) and polynomial evaluation
(Langlois and Louvet 2007), require twice as much storage for intermediate values.
This is not an issue when computations are performed locally, but for distributed
computations this is just as costly as doubling the working precision. A well-known
correction factor, attributed by Chan et al. (1983) to Åke Björk, though also proposed
by Neely (1966), greatly improves the accuracy of the two-pass algorithm when com-
puting the variance.

In this paper we generalize this correction factor to moments of arbitrary order. Our
scheme transmits only one additional value in the second pass, but can correct for the
error in moments of all orders, providing increased accuracy for higher order moments
at a fraction of the cost of generic compensation schemes.Weprovide numerical results
for most of these new formulas, including comparisons with other formulations and
an application to a scientific use case. In particular, we empirically observe that our
generalized incremental and pairwise algorithms perform almost as well as the two-
pass algorithm, and in some cases even better. Our corrected two-pass algorithm yields
accurate results over almost the entire range of representable input values.
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2 Background: computing statistical moments

We begin with a brief notational preamble, after which we directly formulate the
main difficulties that arise when computing statistical moments using floating point
representations.

2.1 Statement of the problem

For p a non-negative integer and using E [·] to denote the expectation, the pth central
moment of a (univariate, real) random variable X is defined as

μp � E
[
(X − E[X ])p] , (2.1)

when the expectations exist (some random variables, e.g. those with a Cauchy distri-
bution, do not have an expectation). For a finite population of n equiprobable values
in a multiset S = {xi }ni=1, this reduces to

μp = 1

n

n∑

i=1

(xi − x̄)p (2.2)

where

x̄ � 1

n

n∑

i=1

xi (2.3)

is the mean. Note that S has to be a multiset, not a set, in order to allow for multiple
copies of the same value.

The first central moment is exactly zero, and the second central moment is the
variance, σ 2 � μ2. For this paper, we only consider the statistics of finite populations
taken in their entirety, i.e., not sampled, to avoid issues of estimation bias. If S is instead
just a finite sample of an infinite population, one may obtain unbiased estimates of
the moments of the whole population (Halmos 1946). E.g., for p = 2 and p = 3
the unbiased estimators are n

n−1μ2 and n2
(n−1)(n−2)μ3, respectively, with μp computed

over the sample as in (2.2). For higher order the formulas become more complicated;
for instance, with p = 4 the unbiased estimator is (Dodge and Rousson 1999):

(n − 1)(n2 − 3n + 3)

n3
μ4 + 3(2n − 3)(n − 1)

n3
μ2

2.

Samples drawn (without replacement) from a finite population require additional cor-
rections. However, unbiased estimates of the moments do not, in general, lead to
unbiased estimates of the derived quantities, such as standard deviation, skewness,
and kurtosis.
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Numerically stable, scalable formulas for parallel. . . 1309

2.2 One-pass versus two-pass approaches

The standard two-pass algorithm explicitly computes the mean μp using (2.3), fol-
lowed by (2.2) to obtain the variance. The two-pass algorithm is numerically stable
even when x̄ is large and μp is small, in a sense that is made more precise in Sect. 4.2.
Its stability for p = 2 can be further improved by applying a well-known correction
factor (Neely 1966; Chan et al. 1983):

μ2 = 1

n

n∑

i=1

(xi − x̄)2 − μ1
2 (2.4)

= 1

n

n∑

i=1

(xi − x̄)2 −
(1
n

n∑

i=1

xi − x̄
)2

. (2.5)

By definition, μ1 = 0 when evaluated with exact arithmetic, but Chan et al. (1983)
show that when computing both μ1 and μ2 with inexact arithmetic using the two-pass
algorithm, the rounding error introduced into μ1 cancels much of the rounding error
introduced into μ2. The corrected two-pass algorithm still only requires two passes,
since μ1 and μ2 can be computed simultaneously.

However, the two-pass approach is inadequate for large or distributed data sets,
where making two complete passes through the data is extremely expensive. It is also
unsuitable when one needs a new estimate of μp each time a new x value is obtained.

The obvious method of obtaining a one-pass calculation, what Chan et al. (1979)
call the textbook algorithm for the variance, is to expand the product (x − x̄)p into
explicit powers of x and x̄ . Using the binomial theorem, this is easy to generalize to
arbitrary order:

μp =
p∑

k=0

(
p

k

)(1
n

n∑

i=1

x p−k
i

)(−x̄
)k

. (2.6)

The inner sums, including that for x̄ , can be updated incrementally or computed in
parallel, and the outer sum requires negligible additional work, since p is typically
small.However, even for p = 2, this expression quickly becomes grossly inaccurate, as
our experiments in Sect. 4.2 show. The alternating signs on each term cause destructive
cancellation, and few, if any, significant digits are retained. The results may even be
negative when p is even, which is clearly nonsensical for it violates the Cauchy-
Schwarz inequality.

Example 2.1 Consider the values x1 = 1 and x2 = x3 = x4 = 1 + 10−13. Their
respective double-precision (64 bits) IEEE-754 floating point hexadecimal represen-
tations (IEEE 1985) are

r(x1) = 3ff0000000000000
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and

r(x2) = r(x3) = r(x4) = 3ff00000000001c2.

Subsequently, one obtains the following representations for the mean:

r(μ) = r

(
1

4

4∑

i=1

r(xi )

)
= 3ff0000000000152,

and the mean of the squares:

r

(
1

4

4∑

i=1

r(xi )
2
)

= 3ff00000000002a3.

Thus the textbook algorithm yields the following value for the variance:

r

(
1

4

4∑

i=1

r(xi )
2
)

− r(μ)2 = bcb0000000000000,

which represents a negative number:

r(−2.220446049250313 × 10−16) = bcb0000000000000

thus establishing that the textbook algorithm can yield negative variances even with
small data sets. This problem is therefore not limited to large statistical calculations,
but it becomes potentially worse as the size of the sample set increases.

2.3 Numerically stable one-pass algorithms

Much better one-pass algorithms for computing the variance have long been known
(Welford 1962; Neely 1966; West 1979; Chan et al. 1979); Chan et al. (1979) sum-
marize them using a generic set of recurrence formulas. Partition S into multisets A
and B of respective sizes nA and nB and define μp,A, μp,B, x̄A, and x̄B to be the
corresponding statistic computed over each partition. Then let

δB,A � x̄B − x̄A, (2.7)

Mp � nμp, (2.8)

and again give MA
p and MB

p an equivalent definition restricted to each partition. We
will find it more convenient to work with these Mp quantities, rather than μp, though
either may be readily obtained from the other. Now

x̄ = x̄A + nB
n

δB,A, (2.9)
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Numerically stable, scalable formulas for parallel. . . 1311

M2 = MA
2 + MB

2 + nAnB
n

δ2B,A . (2.10)

A number of algorithms can be derived from these simple recurrences. Letting
nB = 1 so that B = {y} a singleton yields the incremental update formulas of West
(1979):

x̄ = x̄A + y − x̄A
n

, (2.11)

M2 = MA
2 + n − 1

n
(y − x̄A)2 . (2.12)

On the other hand, letting nA = nB = n/2 (assuming n is even) gives a recursive
pairwise algorithm:

x̄ = x̄A + 1

2
δB,A, (2.13)

M2 = MA
2 + MB

2 + n

4
δ2B,A . (2.14)

While easily parallelizable, the pairwise algorithm can also reduce destructive under-
flow on a uniprocessor, since it ensures that the terms in the update formulas are
approximately commensurate when the data is independent and identically distrib-
uted. By contrast, when n is large, the terms corresponding to the B partition in (2.11)
and (2.12) are very small, affecting only a few of the least significant digits of x̄ and
M2. Both algorithms perform the same number of updates, but the pairwise algorithm
requires O(log n) additional storage. The same pairwise strategy can be applied with
similar benefits to all summation formulas, including (2.2), (2.3), and (2.6).

3 Arbitrary-order update formulas

3.1 Univariate formulas

We begin by generalizing all pairwise and update formulas to arbitrary order and
arbitrary set decomposition.

Proposition 3.1 For any integer p ≥ 2,

Mp = MA
p + MB

p + nA
(−nB

n
δB,A

)p + nB
(nA

n
δB,A

)p

+
p−2∑

k=1

(
p

k

)
δkB,A

[
MA

p−k

(−nB
n

)k + MB
p−k

(nA
n

)k]
.

(3.1)
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Proof By the definition of Mp, and because {A,B} is a partition of S, one has

Mp =
n∑

i=1

(xi − x̄)p (3.2)

=
nA∑

i=1

(xi − x̄)p +
n∑

i=nA+1

(xi − x̄)p (3.3)

=
nA∑

i=1

(
xi − nA x̄A + nB x̄B

n

)p

+
n∑

i=nA+1

(
xi − nA x̄A + nB x̄B

n

)p

(3.4)

=
nA∑

i=1

(
xi − x̄A − nB

n
δB,A

)p +
n∑

i=nA+1

(
xi − x̄B + nA

n
δB,A

)p
(3.5)

=
p∑

k=0

(
p

k

)(δB,A
n

)k[
(−1)kMA

p−kn
k
B + MB

p−kn
k
A

]
, (3.6)

thanks to the commutativity of summation over finite sets, which allows us to swap∑p
k=0 with

∑nA
i=1 and

∑n
i=nA+1. Now, a few simplifications are in order: first, the

k = 0 term of the above summation is simply MA
p + MB

p ; second, by definition, both

MA
1 and MB

1 are zero, eliminating the k = p−1 term; last, MA
0 = nA and MB

0 = nB,
eliminating the need to compute these values separately for use in the k = p term.
Applying these three simplifications to (3.6) yields (3.1). ��

The computation ofMp requires the values ofMA
q andMB

q for each q ∈ {2, . . . , p},
instead of just for q = p. Thus the update formula performs O(p2) arithmetic opera-
tions per element, compared to the O(1) operations the two-pass algorithm required if
onlyMp is actually needed.A small improvement in accuracymay be obtained by eval-
uating (3.1) as the sum of two polynomials in −nB

n δB,A and nA
n δB,A using Horner’s

rule. When local computations are cheap, one could even use the compensated Horner
scheme, which often provides exactly rounded results (Langlois and Louvet 2007),
but this does not prevent the accumulation of rounding errors in recursive applications
of (3.1).

Corollary 3.1 In the case where B is reduced to a singleton {y}, Proposition 3.1
reduces to the incremental update formula for S = A ∪ {y} as follows

Mp = MA
p +

[
n − 1

(−n)p
+

(n − 1

n

)p
]
δ
p
B,A +

p−2∑

k=1

(
p

k

)
MA

p−k

(−δB,A
n

)k

. (3.7)

Proof Corollary 3.1 is an immediate specialization of Proposition 3.1 obtained when
nA = n − 1 and nB = 1. In this case, each MB

p vanishes since x̄B = y, and thus (3.1)
immediately simplifies to (3.7). ��
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Numerically stable, scalable formulas for parallel. . . 1313

Remark 3.1 By noticing that

n − 1

(−n)2
+

(n − 1

n

)2 = n2 − n

n2
= n − 1

n
(3.8)

and taking p = 2, one directly retrieves (2.12) from Corollary 3.1.

We provide implementations of univariate incremental and pairwise update for-
mulas in the descriptive statistics class vtkDescriptiveStatistics of the
open-source Visualization Tool Kit (VTK), with the Learn() and Aggregate()
methods, respectively.

3.2 Multivariate formulas

We continue by generalizing the univariate results to arbitrary multivariate moments
(co-moments). These are of interest, in particular, for Pearson correlation analy-
sis, which we wish to conduct on large-scale, distributed data sets. Higher order
co-moments such as co-skewness and co-kurtosis also have financial modeling appli-
cations (Hung et al. 2004).

Extending the notation of previous sections, let S = {xi }ni=1 ⊂ R
d , where each

xi = (xi,1, . . . , xi,d) ∈ R
d is a d-dimensional vector. Now let α = (α1, . . . , αd) ∈ N

d

and β = (β1, . . . , βd) ∈ N
d be multi-indices of non-negative integers so that

α ≤ β ⇐⇒ α j ≤ β j ∀ j ∈ {1 . . . d}, (3.9)

|α| �
d∑

j=1

α j , (3.10)

(
α

β

)
�

d∏

j=1

(
α j

β j

)
, (3.11)

xα
i �

d∏

j=1

x
α j
i, j , (3.12)

and define the central co-moment of order α of a finite population S to be

μα � 1

n

n∑

i=1

(xi − x̄)α. (3.13)

Under this definition the usual covariance is obtained with α = (1, 1). All the terms
x̄ , x̄A, x̄B, δB,A, μα,A, μα,B, Mα , MA

α , MB
α are defined exactly as in the univariate

case, with α replacing the univariate order p. Similarly, we define

Mα �
n∑

i=1

(xi − x̄)α (3.14)
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for the multi-index α.

Proposition 3.2 The recursive update formula for Mα is:

Mα =
∑

β≤α

(
α

β

)
δ
β

B,A

[(
−nB

n

)|β|
MA

α−β +
(nA

n

)|β|
MB

α−β

]
. (3.15)

Proof Following the proof of Proposition 3.1,

Mα =
nA∑

i=1

(
xi − x̄A − nB

n
δB,A

)α +
n∑

i=nA+1

(
xi − x̄B + nA

n
δB,A

)α

. (3.16)

Expanding out the multi-index products and applying the binomial theorem yields

Mα =
nA∑

i=1

d∏

j=1

α j∑

k=0

(
α j

k

)(
xi, j − x̄ j,A

)α j−k
(
−nB

n
δB,A j

)k

+
n∑

i=nA+1

d∏

j=1

α j∑

k=0

(
α j

k

)(
xi, j − x̄ j,B

)α j−k
(nA

n
δB,A j

)k
.

(3.17)

Distributing the inner sums over the products, this simplifies to

Mα =
nA∑

i=1

∑

β≤α

(
α

β

)(
xi − x̄A

)α−β
(
−nB

n
δB,A

)β

+
n∑

i=nA+1

∑

β≤α

(
α

β

)(
xi − x̄B

)α−β
(nA

n
δB,A

)β

.

(3.18)

Once again, the commutativity of summation over finite sets allows us to swap
∑

β≤α

with
∑nA

i=1 and
∑n

i=nA+1, and rearranging terms produces (3.15). ��
A quick check verifies that (3.15) reduces to (3.6) when d = 1 and α = (p). The

same simplifications made in the univariate case still apply when actually computing
the full (3.15), though they do not simplify the notation. That is, the β = 0d term
is simply MA

α + MB
α , and for every β term where it exists k ∈ {1, . . . , d} such that

αk − βk = 1, one has

Mα−β =
n∑

i=1

d∏

j=1

(xi, j − x̄ j )
α j−β j =

n∑

i=1

(xi,k − x̄k)
d∏

j=1
j �=k

(xi, j − x̄ j )
α j−β j = 0 (3.19)

by definition of the d-dimensional mean x̄ = (x̄1, . . . , x̄d), and thus all such β terms
vanish. Also, when β = α, MA

0 = nA and MB
0 = nB. Applying these simplifications
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to (3.15) with α = (1, 1) yields

M(1,1) = MA
(1,1) + MB

(1,1) +
[
nA

(
−nB

n

)2 + nB
(nA

n

)2]
δ
(1,1)
B,A (3.20)

= MA
(1,1) + MB

(1,1) + nAnB
n

(x̄1,B − x̄1,A)(x̄2,B − x̄2,A). (3.21)

When B is reduced to a singleton {(y1, y2)}, this is equivalent to the incremental
covariance update formula derived by Neely (1966):

M(1,1) = MA
(1,1) + MB

(1,1) + n − 1

n
(y1 − x̄1,A)(y2 − x̄2,A). (3.22)

We provide implementations of bivariate incremental and pairwise update formu-
las in the open-source Visualization Tool Kit (VTK), respectively in the Learn()
and Aggregate() methods of the correlative statistics vtkCorrelative
Statistics class.

3.3 Weighted formulas

Consider a quantity x̃W defined as a weighted arithmetic mean with respect to a given
set of weights W . Replacing in Propositions 3.1 and 3.2 the set sizes n, nA, and nB
with sums of non-negative weights {wi }1≤i≤N ,

W �
n∑

i=1

wi , WA �
nA∑

i=1

wi , WB �
n∑

i=nA+1

wi , (3.23)

and the other sums with weighted sums,

x̃W � 1

W

n∑

i=1

wi xi , (3.24)

Mp �
n∑

i=1

wi (xi − x̃W )p, (3.25)

leads directly to weighted versions of our main results:

x̃W = x̃W,A + WB
W

δB,A, (3.26)

Mp = MA
p + MB

p + WA
(−WB

W
δB,A

)p + WB
(WA
W

δB,A
)p

+
p−2∑

k=1

(
p

k

)
δkB,A

[
MA

p−k

(−WB
W

)k + MB
p−k

(WA
W

)k]
, (3.27)
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1316 P. Pébay et al.

Mα =
∑

β≤α

(
α

β

)
δ
β

B,A

[
MA

α−β

(
−WB

W

)|β| + MB
α−β

(WA
W

)|β|]
. (3.28)

These formulasmay be used to derive adaptive estimators for non-stationary signals
by setting WB = 1

η
WA, where 1

η
with η > 0 is a forgetting factor, similar to that

proposed by Dembélé and Favier (1998). This holds the relative importance of the
most recent sample constant, while that of past samples decays exponentially. Other
adaptive schemes are possible.

Remark 3.2 In addition, the proofs of Propositions 3.1 and 3.2 remain equally valid
if the sums over S are replaced with integrals, since the other sums are finite. Thus,
one can use (3.27) and (3.28) to compute moments of mixture distributions given the
moments of each independent mixture element. Such moments can indicate goodness
of fit or even be used to estimate the mixture parameters themselves via the method
of moments (Pearson 1894).

3.4 Formulas for compound moments

A special case is that of compound moments of the type

μp = 1

n

n∑

i=1

(xi − x̃W )p, (3.29)

where x̃W is the weighted mean defined by (3.24). Such compound moments are
often used in moment-closure modelling methods of turbulent flows (Jones 1993).
Correspondingly, we define the quantity M̃p by replacing x̄ with x̃W in (3.2) and,
when (3.26) is applied, it expands to

M̃p =
nA∑

i=1

(xi − x̃W )p +
n∑

i=nA+1

(xi − x̃W )p (3.30)

=
nA∑

i=1

(
xi − x̃W,A − WB

W
δB,A

)p +
n∑

i=nA+1

(
xi − x̃W,B + WA

W
δB,A

)p
(3.31)

=
p∑

k=0

(
p

k

)
δkB,A

[
M̃A

p−k

(−WB
W

)k + M̃B
p−k

(WA
W

)k]
(3.32)

where δ̃B,A is the compound counterpart of δB,A, defined as

δ̃B,A � x̃W,B − x̃W,A. (3.33)

The k = 0 term simplifies to M̃A
p + M̃B

p , while the k = p term assumes the slightly
different form of

nA
(
−WB

W
δ̃B,A

)p + nB
(WA
W

δ̃B,A
)p

, (3.34)
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since M̃A
0 = nA and M̃B

0 = nB. However, the k = p − 1 term is non-zero and expands
to

pM̃A
1

(
−WB

W
δ̃B,A

)p−1 + pM̃B
1

(WA
W

δ̃B,A
)p−1

, (3.35)

where
M̃A

1 = nA
(
x̄A − x̃W,A

)
(3.36)

and
M̃B

1 = nB
(
x̄B − x̃W,B

)
. (3.37)

The resulting expansion is thus

M̃p = M̃A
p + M̃B

p

+ pM̃A
1

(−WB
W

δ̃B,A
)p−1 + pM̃B

1

(WA
W

δ̃B,A
)p−1

+ nA
(−WB

W
δ̃B,A

)p + nB
(WA
W

δ̃B,A
)p

+
p−2∑

k=1

(
p

k

)
δ̃kB,A

[
M̃A

p−k

(−WB
W

)k + M̃B
p−k

(WA
W

)k]

(3.38)

which can be slightly simplified as follows

M̃p = M̃A
p + M̃B

p

+
(
pM̃A

1 − nA
WB
W

δ̃B,A
)(−WB

W
δ̃B,A

)p−1

+
(
pM̃B

1 + nB
WA
W

δ̃B,A
)(−WA

W
δ̃B,A

)p−1

+
p−2∑

k=1

(
p

k

)
δ̃kB,A

[
M̃A

p−k

(−WB
W

)k + M̃B
p−k

(WA
W

)k]
.

(3.39)

In Sect. 4.3 we apply this compound moment formula to a real scientific use case of
turbulent combustion simulation data.

3.5 Two-pass correction

Chan et al. (1983) note that applying the correction factor for the second-ordermoment
in (2.5) is equivalent to guessing a trial mean with (2.3), shifting the data by this value,
and then applying the textbook algorithm.

Applying the same strategy to the arbitrary-order formula (2.6) yields

μp =
p∑

k=0

(
p

k

)( n∑

i=1

(xi − x̄)p−k
)(

−1

n

n∑

i=1

xi − x̄
)k

. (3.40)
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Since central moments are defined relative to the mean, subtracting a constant from
the data does not affect the result, but when that constant is the mean (or a close
approximation), it can have a large effect on accuracy. Like the p = 2 case, there is
no destructive cancellation since the correction terms are much smaller than the k = 0
term.

Again, this is a two-pass algorithm. The first pass computes x̄ , and the second pass
computes all of the inner sums in parallel. It is inexpensive computationally, requiring
only two additions per value plus a small, constant amount ofwork at the end.However,
its real advantage over typical compensation schemes is that it can correct for the error
in the moments of all orders while only transmitting a single correction term.

4 Numerical results

In this section, we examine the performance of the proposed formulas, in terms of
numerical error and computational efficiency.

4.1 Algorithm correctness

We use a series of (pseudo-)randomly generated samples in order to experimentally
assess the correctness of the algorithms obtained with the one-pass formulas of Sect. 3.
Specifically, input tables are created at run time by generating 4 separate samples of
independent pseudo-random variables, the two first (resp. last) variables having a
standard normal (resp. standard uniform) distribution. For the sake of illustration,
equally-sized subsets of data are created and their respective descriptive statistics
calculated by each process using the incremental, one-pass formulas (3.7) and (3.21),
respectively for descriptive and correlative statistics. Subsequentely, the aggregated
statistics over the entire parallel data set are calculated using the pairwise update
formulas (3.1) and (3.15), respectively.

Relatively large input sets are used (n = 106), in order to mitigate the risk of
statistical bias due to insufficient sampling. In addition, the test case is run 100 times
for each random variable, and we examine the statistical dispersion of the results
of the ensemble of these runs. We compare the calculated results to the theoretical
values of the random variables which serve as models for the pseudo-random inputs,
namely, uniform over [0, 1] (denotedU(0, 1)) and standard normal (denotedN (0, 1)).
This comparison is done by comparing the sample mean of the quantity of interest
(e.g., mean) across a number nr of runs to the corresponding theoretical quantity (e.g,
expectation), and then by examining the variability of the results by checking the
standard deviation of the quantity of interest across the nr runs.

Using this methodology with either nr = 100 or nr = 200 runs over 32 processors,
the results provided in Tables 1 and 2, respectively for the descriptive and correla-
tive statistics pairwise update algorithms operating on standard uniform and standard
normal pseudo-random inputs, we see that the numerical results agree with their the-
oretical counterparts, and display very limited variability across runs.
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Table 1 Computed descriptive statistics of a pseudo-random sample (size: 106), averaged across 200 runs,
versus theoretical values

Statistic Exact Sample mean SD

Mean 0.5 0.4999973 5.968778 × 10−5

Variance 0.083 . . . 8.333224 × 10−2 1.292998 × 10−5

Skewness 0
g1 : −4.5 × 10−6

G1 : −4.5 × 10−6
g1 : 3.0 × 10−4

G1 : 3.0 × 10−4

Kurtosis −1.2
g2 : −1.200003
G2 : −1.200003

g2 : 1.9 × 10−4

G2 : 1.9 × 10−4

Mean 0 −1.279931 × 10−6 1.706985 × 10−4

Variance 1 0.9999982 2.711815 × 10−4

Skewness 0
g1 : 1.5 × 10−4

G1 : 1.5 × 10−4
g1 : 3.9 × 10−4

G1 : 3.9 × 10−4

Kurtosis 0
g2 : 4.4 × 10−4

G2 : 4.4 × 10−4
g2 : 8.9 × 10−4

G2 : 8.9 × 10−4

Top: U(0, 1), bottom:N (0, 1)

Table 2 Computed correlative statistics of a pseudo-random sample (size: 106), averaged across 100 runs,
versus theoretical values

Statistic Exact Sample mean SD

Mean X 0.5 0.4999953 5.779502 × 10−5

Mean Y 0.5 0.4999987 6.061554 × 10−5

Variance X 0.083 . . . 8.33 × 10−2 1.242125 × 10−5

Variance Y 0.083 . . . 8.33 × 10−2 1.267820 × 10−5

Covariance 0 6.78 × 10−7 1.622636 × 10−5

Mean X 0 −6.86 × 10−6 1.693682 × 10−4

Mean Y 0 −2.71 × 10−7 1.695545 × 10−4

Variance X 1 1.000016 2.883309 × 10−4

Variance Y 1 0.9999838 2.551778 × 10−4

Covariance 0 −1.01 × 10−5 1.885743 × 10−4

Top: U(0, 1), bottom:N (0, 1)

4.2 Condition number and relative error bounds

In order to examine the numerical stability of algorithms for computing the vari-
ance, Chan and Lewis (1978) introduced the concept of condition number of the data
S, defined as follows

κ � ‖S‖2√
M2

,
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Table 3 Error bounds for the
relative error in the calculation
of M2 as summarized in Chan
et al. (1983)

Algorithm Error bound

Textbook κ2εN

Pairwise textbook κ2ε log N

Two-pass εN + κ2ε2N2

Pairwise two-pass ε log N + κ2ε2 log2N

Incremental κεN

Pairwise κε log N (conjecture)

Corrected two-pass εN + κ2ε3N3

Pairwise corrected two-pass ε log N + κ2ε3 log3N

where ‖S‖2 is the Euclidean norm of the data set S. Therefore, using the fact that the
mean of S is the minimizer of u �→ ‖S − u‖2, it immediately follows that κ ≥ 1.
The condition number quantifies the sensitivity of M2 to relative errors introduced in
the data S: if relative errors of size δ are introduced in S, then the resulting relative
variation of M2 is bounded by κδ.

Further, Chan et al. (1983) established error bounds for a variety of algorithms for
computing variance, one and two-pass alike, that depend solely on κ , N , and ε. For
convenience, we reproduce in extenso in Table 3 the error bounds for the relative error
in the calculation of M2 summarized in Chan et al. (1983); note that only the dominant
terms are provided. Constant factors are omitted for clarity.

We empirically extended these results by comparing all 8 schemes present in the
second-order analysis of Chan et al. (1983), up to the order 6. These results, averaged
over 216 Gaussian (resp. exponential) samples of various sizes, are illustrated in Fig-
ure 1 (resp. Fig. 2). Here, we observe that in all cases, the textbook approach is always
the worst and that, except for the second order, the (non-corrected) two-pass and pair-
wise approaches exhibit similar relative errors. Therefore, themajor advantage in terms
of execution speed, inherent to our one-pass incremental approach over the two-pass,
is not offset by degraded numerical accuracy. It should be noted that empirical results
are calculated using single-precision arithmetic, and thus an accuracy breakdown near
1.2 × 10−7 is unavoidable. We nevertheless observe that when numerical accuracy
takes precedence over execution speed, and when passing twice over the data is feasi-
ble, a corrected two-pass algorithm always fares best. Our arbitrary-order correction
provided in (3.40) should be used in this case.

4.3 Application to a scientific use case

Finally, we demonstrate the benefit of employing the single-pass update algorithm
in the statistical analysis of a real scientific use-case; turbulent combustion. First-
principles direct numerical simulations (DNS) of turbulent combustion provide
fundamental insight into the nature of turbulence-chemistry interactions which are
highly non-linear and span a broad range of spatio-temporal scales (Chen et al. 2009).
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Fig. 1 The relative error (ordinate) in moments of orders 2 through 6 averaged over 216 samples of size 64
(left), 512 (center), and 4096 (right) drawn from a Gaussian distribution with mean 1 and varying standard
deviation (abscissa)

Statistical moments, both weighted and unweighted, are often used to quantify and
describe the nature of turbulence-chemistry interactions from DNS.

To evaluate the performance of the proposed algorithm we compare the analysis
time taken to extract second moments from a real combustion DNS dataset. The DNS
corresponds to a statistically-stationary premixed rectangular slot-jet Bunsen flame
of methane-air mixture (Sankaran et al. 2007). The DNS is performed on a three-
dimensional rectangular Cartesian domain consisting of 720× 400× 180 grid points
in x , y and z directions respectively and the solution vector consists of 18 variables at
each grid point. It is often of interest in simulations like these to study the moments of
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Fig. 2 The relative error (ordinate) in moments of orders 2 through 6 averaged over 216 samples of size
64 (left), 512 (center), and 4096 (right) drawn from a noncentral exponential distribution with mean 1 and
varying standard deviation (abscissa)

the normalised fuel mass fraction φ f which is an indicator of reaction progress. The
variable φ f is defined such that its value goes smoothly from 0 in the unburnt state to
1 in the fully burnt state.

Sixty temporal snapshots of the DNS were analysed on 600 cores of a CRAY
cluster. The configuration time and z direction are statistically homogeneous and
hence moments are constructed by loading each snapshot of data and performing MPI
collectives along the z direction. By far the biggest bottleneck in such a workflow is
the time taken to load each snapshot of data from disk using parallel I/O since the MPI
collectives finish much quicker in comparison. For this DNS it took approximately
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Fig. 3 Comparison of the compound secondmoment ofφ f extracted from turbulent combustionDNS data.
Left moment extracted using the single-pass algorithm. Right moment extracted using the naive two-pass
algorithm

11s to load one snapshot while the compute time, including the collectives, for each
snapshot was a few milliseconds. This trend will worsen at extreme scale where nodes
are projected to have large concurrency and data movement is projected to be very
expensive, both in terms of time and power consumption.

For the current analysis, unsurprisingly, extracting second moments using the
single-pass algorithm took roughly half the amount of time (≈660s) compared to the
naive two-pass algorithm (≈1320s) on the same amount of computational resources
(600 cores). Figure 3 shows the compound moment of φ f extracted using both the
single-pass and two-pass algorithms. The results are numerically very close and the
Euclidean norm of the difference is 4.4× 10−4 (note that φ f is a quantity which is of
order unity). Again, we observe that the gain in efficiency of our incremental one-pass
approach is not at the expense of numerical accuracy.

5 Conclusion

In this work we started by surveying existing results for the derivation of incremental
and parallel formulas for univariate and multivariate moments of arbitrary order, and
discussed their limitations in terms of numerical stability and accuracy as well as for
the specific aim of massively parallel calculations. Subsequently, we derived gener-
alized, arbitrary-order, arbitrary-variate one pass formulas which exhibit numerical
stability while lending themselves to scalable parallel implementations. Furthermore,
we developed extensions of these results for the computation ofweighted or compound
moments, and demonstrated their use in the numerical analysis of turbulent flows. In
addition, we have developed a generalized correction factor for the standard two-pass
moment algorithms, that supports the maintenance of accuracy over nearly the full
representable range of the input, avoiding the need for extended precision arithmetic.

We also provided the results from a suite of empirical tests to study the condition
number and relative error of various formulations. Our findings show that the gen-
eralized incremental and pairwise algorithms perform almost as well as the standard
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two-pass formulations, and in some cases even better. Thus, the reduction in execution
speed inherent to the one-pass incremental approach over the two-pass is generally
not offset by degraded numerical accuracy. We observed in our experiments that a
corrected two-pass algorithm using our arbitrary-order correction provided in (3.40),
results in the smallest overall error. This approach is only necessary when numerical
accuracy takes precedence over execution speed, and when passing twice over the data
is feasible.
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