The Problem

- Suppose we have a transform stage with no blocking artifacts (wavelets, lapped transforms...)
- Want to avoid blocking in motion compensation
- Overlapped Block Motion Compensation (OBMC) works great, but...
 - Non-overlapped Block Match Algorithms (BMA) get a lot of gains from supporting variable block sizes
 - Not obvious how to handle variable sizes with OBMC
Previous Work

- “Usual” approach is to overlap with the smallest block size (Dirac, Qualcomm’s recent T13-SG16-C0806 submission, etc.)
 - Not really “variable size”
 - Just better entropy coding for “fixed size”
- Zhang et al. (1998) did “adaptive repartitioning”
 - Split large blocks until overlap compatible with their smaller neighbors
 - Might still use small windows with large blocks
 - How do you search?
Adaptive Repartitioning

- Still, results were encouraging...

![Graph showing rate-distortion performance for football sequence (VSBMC)](image)

Fig. 8 Rate-distortion performance for football sequence (VSBMC)

- VSBMC
- VSBMC + GOBMC
- VSBMC + VRP
- VSBMC + AVRP
Proposed Approach

- Restrict adjacent block size to differ by no more than a factor of 2
- Use a 4-8 mesh to impose the restriction
 - Data structure used for surface simplification in computer graphics
 - Has a good search algorithm
- Define interpolation rules based on this restriction
4-8 Mesh

- Start with the largest block size
4-8 Mesh

- Odd levels: can add new MVs to block centers
 - Only if *two parents* are in the grid (always at L1)
4-8 Mesh

- Odd levels: can add new MVs to block centers
 - Only if *two parents* are in the grid (always at L1)
4-8 Mesh

- Even levels: can add new MVs to block edges
 - Again, only if *two parents* are in the grid

![4-8 Mesh Diagram](image-url)
4-8 Mesh

- And so on...

Level 3
4-8 Mesh

- And so on... and so on...

Level 4
Blending Windows for Mismatched Block Sizes

- Simple sums of bilinear weights
Block Size Decision

• Greedily inserting/removing leaves does poorly
 – Objective not monotonic
 – May have to add several MVs that regress R/D before you can add one that helps a lot

• “General Decimation” (Balmelli 2001)
 – Bottom-up, but...
 – Try deleting every MV in the grid
 • If it has children, delete them, too
Greedy vs. General Decimation applied to surface simplification (Balmelli 2001)
New Scheme vs. Variable Block-Size BMA

(Quick 2-hour hack experiment, not in paper)
Future Work

- Can remove restriction on adjacent block sizes
 - Still need to keep edges between different sizes “unsplit”
 - No longer a 4-8 mesh
- Larger block sizes (currently only support 16x16)
- Better MV prediction
- Better encoder search
Overall Daala Performance: PSNR
Overall Daala Performance:
PSNR-HVS

![Graph showing overall Daala performance with PSNR-HVS metrics. The graph plots dB against Bits/ Pixel for Daala (PSNR-HVS), x265 (PSNR-HVS), and x264 (PSNR-HVS).]
Overall Daala Performance: Fast[Multi-Scale]SSIM
Resources

- Daala codec website: https://xiph.org/daala/
- Git repository: https://git.xiph.org/
- IRC: #daala channel on irc.freenode.net
- Mailing list: daala@xiph.org
Questions?