Into the Depths:
The Technical Details Behind AV1

Nathan Egge <negge@mozilla.com>
Mile High Video Workshop 2018
July 31, 2018
82% of Internet traffic by 2021

Cisco Study
Alliance for Open Media (AOM)

Goals of the Alliance:

● Produce a video codec for a broad set of industry use cases
 ○ Video on Demand / Streaming
 ○ Video Conferencing
 ○ Screen sharing
 ○ Video game streaming
 ○ Broadcast
● Open Source and Royalty Free
● Widely supported and adopted
● At least 30% better than current generation video codecs
AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, frame header, tile header, etc
- New adaptive multi-symbol entropy coding
 - Up to 16 possible values per symbol
- New coefficient coder
 - LV-MAP exploits multi-symbol arithmetic coder
- More block sizes
 - Prediction blocks from 128x128 down to 4x4
 - Rectangular blocks
 - 1:2 and 2:1 ratios (4x8, 8x4, etc)
 - 1:4 and 4:1 ratios (4x16, 16x4, etc)
 - Transform sizes from 64x64 down to 4x4
 - Includes rectangular transforms 1:2, 2:1 and 1:4, 4:1 ratios
- More transform types
 - 16 possible transform types
 - Row and column chosen from: IDTX, DCT, DST, ADST
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - 4:4:4, 4:2:2, 4:2:0, monochrome

- More prediction modes
 - Intra
 - 8 main directions plus delta for up to 56 directions
 - Smooth HV modes interpolate across block
 - Palette mode with index map up to 8 colors
 - Chroma from Luma intra predictor
 - Intra Block Copy
 - Inter
 - Expanded reference list (up to 7 per frame)
 - Allow ZEROMV predictor, which isn’t always (0,0)
 - Compound mode
 - Inter-Intra prediction
 - Depends on difference between pixel prediction
 - Smooth blending limited to certain intra modes
 - Wedge codebook (Inter-Inter, or Inter-Intra)
 - Warped motion local affine model with neighbors
 - Global motion affine model across entire frame
- Loop filtering
 - Deblocking filter
 - Constrained Directional Enhancement Filter
 - Loop restoration
 - Film grain synthesis

Full AV1 Specification: https://aomedia codec.github.io/av1-spec/
AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, frame header, tile headers, etc.
- New adaptive multi-symbol entropy coding
 - Up to 16 possible values per symbol
- New coefficient coding
 - LV-MAP exploits multi-symbol arithmetic coder
- More block sizes
 - Prediction blocks from 128x128 down to 4x4
 - Rectangular blocks
 - 1:2 and 2:1 ratios (4x8, 8x4, etc)
 - 1:4 and 4:1 ratios (4x16, 16x4, etc)
 - Transform sizes from 64x64 down to 4x4
 - Includes rectangular transforms 1:2, 2:1 and 4:4 ratios
- More transform types
 - 16 possible transform types
 - Row and column chosen from IDCT, DCT, DST, ADST
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - 4:4:4, 4:2:2, 4:2:0, monochrome
- More prediction modes
 - Intra
 - 8 main directions plus delta for up to 56 directions
 - Smooth HV modes interpolate across block
 - Palette mode with index map up to 8 colors
 - Chroma from Luma intra predictor
 - Intra Block Copy
 - Inter
 - Expanded reference list (up to 7 per frame)
 - Allow ZEROMV predictor, which isn’t always (0,0)
 - Compound mode
 - Inter-Intra prediction
 - Depends on difference between pixel prediction
 - Smooth blending limited to certain intra modes
 - Wedge codebook (Inter-Inter, or Inter-Intra)
 - Warped motion local affine model with neighbors
 - Global motion affine model across entire frame
- Loop filtering
 - Deblocking filter
 - Constrained Directional Enhancement Filter
 - Loop restoration
- Film grain synthesis

Full AV1 Specification: https://aomedia-codec.github.io/av1-spec/
AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, frame header, tile header, etc.
- New adaptive multi-symbol entropy coding
 - Up to 16 possible values per symbol
- New coefficient coding
 - LV-MAP exploits multi-symbol arithmetic coder
- More block sizes
 - Prediction blocks from 128x128 down to 4x4
 - Rectangular blocks
 - 1:2 and 2:1 ratios (4x8, 8x4, etc)
 - 1:4 and 1:1 ratios (4x16, 16x4, etc)
 - Transform sizes from 64x64 down to 4x4
 - Includes rectangular transforms 1:2, 2:1 and 1:4, 4:1 ratios
- More transform types
 - 16 possible transform types
 - Row and column chosen from IDTX, DCT, DST, ADST
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - 4:4:4, 4:2:2, 4:2:0, monochrome
- More prediction modes
 - Intra
 - 8 main directions plus delta for up to 56 directions
 - Smooth HV modes interpolate across block
 - Palette mode with index map up to 8 colors
 - LV-MAP exploits multi-symbol arithmetic coder
 - Inter
 - Expanded reference list (up to 7 per frame)
 - ZEROMV predictor, which isn’t always (0,0)
 - Compound mode
- Inter-Intra prediction
 - Depends on difference between pixel prediction
 - Smooth blending limited to certain intra modes
- Wedge codebook (Inter-Inter, or Inter-Intra)
 - Warped motion local affine model with neighbors
 - Global motion affine model across entire frame
- Loop filtering
 - Deblocking filter
 - Constrained Directional Enhancement Filter
 - Loop restoration
- Film grain synthesis

Full AV1 Specification: https://aomediacodec.github.io/av1-spec/
Profiles

Main
- 8-bit and 10-bit
- 4:0:0 and 4:2:0 chroma subsampling

High
- 8-bit and 10-bit
- 4:0:0, 4:2:0 and 4:4:4 chroma subsampling

Professional
- 8-bit, 10-bit and 12-bit
- 4:0:0, 4:2:0, 4:2:2 and 4:4:4 chroma subsampling
Levels

For a given sequence, place limits on:

- frame size (width and height)
- maximum picture size (area in samples)
- maximum display rate (samples per second)
- maximum decode rate (samples per second)
- average rate (Mbits per second)
- high rate (Mbits per second)
- maximum number of tiles
- maximum number of tile columns
High Level Syntax

Sequence Header

Frame Header

Tile Group

Tile

Tile

Tile Group

Tile

Tile
Colors and HDR

- Colorspace, color matrix, transfer functions, etc. can be encoded directly in the bitstream
 - Chroma siting and levels too
- HDR metadata can be added through the Metadata OBU syntax
Codecs 101

Prediction → Transform → Quantization → Entropy Coding

Loop Filter

11
Multi-Symbol Entropy Coder

- Arithmetic Range Coder
- Code both binary symbols and multi-symbols
 - Alphabet sizes up to 16
- Improve EC throughput with high rate streams
 - Instead of 1 bit per cycle, decode up to 4
- Use 8x9 -> 17 bit multiples when coding
 - 15-bit CDFs shifted down before multiply
 - Adaptation still occurs with 15-bit precision
- Fast adaptation mode for first few symbols
Transform Types

VP9 has two types: DCT and ADST
- Chosen independently for horizontal / vertical directions
- Signaled once per prediction block

AV1 has four types:
- DCT
- ADST
- FlipADST (mirror image of ADST)
- Identity (no transform)

Still chosen independently for horizontal / vertical directions
- Total of 16 possible combinations
- Not all combinations allowed in all contexts (e.g., no FlipADST for intra)

Signaled once per transform block
10 different splitting modes

- Last (4-way) split is recursive
Transform Block Sizes: Intra

Signaling mostly unchanged from VP9

- One transform size per prediction block
- For rectangular prediction blocks, largest rectangular transform that fits allowed, e.g., 1:2, 2:1, 4:1 and 1:4 ratio transform blocks
- Transform sizes go up to 64x64
 - Only upper left 32x32 region allowed to be non-zero
Transform Block Sizes: Inter

Signaling completely different from VP9

- Four way quad tree splitting
- For rectangular prediction blocks, largest rectangular transform that fits also allowed
- Available sizes same as intra
Intra Prediction Modes

• More directional modes
 ○ 8 main directions plus delta for up to 56 directions
 ○ Not all modes available at smaller sizes
• Smooth H + V modes
 ○ Smoothly interpolate between values in left column (resp. above row) and last value in above row (resp. left column)
• Paeth predictor mode
• Palette mode
 ○ Color index map with up to 8 colors
 ○ Separate palettes for Y, U and V planes
 ○ Palette index coded using context model for each pixel in the block
 ○ Pixels predicted in ‘wavefront’ order to allow parallel computation
• Chroma from Luma
Chroma from Luma Intra Prediction

- Predict chroma channel based on decoded luma
 - Encoder signals best correlation constants: α_{cb} and α_{cr}
- Good for screen content or scenes with fast motion
Chroma from Luma Algorithm

- Reconstructed Luma Pixels
- Subsample
- Average
- Transform-Sized Averages (Q3)
- Contribution to the AC (in the spatial domain)
- Signaled Scaling Factor α (Q3)
- Scaled Values (Q0)
- DC_PRED (Q0)
- CfL Prediction
UV Mode Selection Example (https://goo.gl/6tKaB8)

- CFL_PRED 17%
- DC_PRED 44.36%
- TM_PRED 7.98%
- SMOOTH_PRED 4.85%

Ohashi0806shield.y4m
QP = 55
Awesome for Gaming (Twitch dataset)

<table>
<thead>
<tr>
<th>BD-Rate (%)</th>
<th>PSNR</th>
<th>PSNR-HVS</th>
<th>SSIM</th>
<th>CIEDE2000</th>
<th>PSNR Cb</th>
<th>PSNR Cr</th>
<th>MS SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>-1.01</td>
<td>-0.93</td>
<td>-0.90</td>
<td>-5.74</td>
<td>-15.55</td>
<td>-9.88</td>
<td>-0.81</td>
</tr>
</tbody>
</table>

Notable Mentions

<table>
<thead>
<tr>
<th>BD-Rate (%)</th>
<th>PSNR</th>
<th>PSNR-HVS</th>
<th>SSIM</th>
<th>CIEDE2000</th>
<th>PSNR Cb</th>
<th>PSNR Cr</th>
<th>MS SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTA V</td>
<td>-1.11</td>
<td>-1.11</td>
<td>-1.01</td>
<td>-5.88</td>
<td>-15.39</td>
<td>-5.57</td>
<td>-1.04</td>
</tr>
<tr>
<td>Starcraft</td>
<td>-1.41</td>
<td>-1.43</td>
<td>-1.38</td>
<td>-4.15</td>
<td>-6.18</td>
<td>-6.21</td>
<td>-1.43</td>
</tr>
</tbody>
</table>

Notable Mentions

- **Minecraft**
 - MINECRAFT_10_120f.y4m
- **GTA V**
 - GTAV_0_120f.y4m
- **Starcraft**
 - STARCRAFT_10_120f.y4m
Motion Vector Coding

- Each frame has a list of 7 previous frames to reference (out of a pool of 8)
 - Can reference non-displayed frames, so many possible structures
- Construct list of top 4 MVs for a given reference / reference pair from neighboring area
- Complicated entropy coding scheme
Compound Prediction

(½, ½) weights like VP9

Inter-inter compound segment
- Pixel weights depend on difference between prediction pixels

Inter-intra gradual weighting
- Smoothly blends from inter to intra prediction
- Only a limited set of intra modes allowed (DC, H, V, Smooth)

Wedge codebook (inter-inter or inter-intra)
Global Motion

- Defines up to a 6-parameter affine model for the whole frame (translation, rotation and scaling)
- Blocks can signal to either use the global motion vector or code a motion vector like normal
 - If global motion isn’t used, default is 0,0
Warped Motion

- Use neighboring blocks to define same motion model within a block
 - Decomposed into two shears with limited range
 - Similar complexity to subpel interpolation
Segmentation IDs

- Up to 8 possible segment labels (3 bits)
 - Value set per label, e.g., filter strength, quantizer, reference frame, skip
 - Signaled per prediction block, down to 8x8
- Can either predict segment ID temporally or spatially (chosen per frame)
 - Spatial prediction
 - Used to change quantizer/loop filter strength
 - Useful for adaptive quantization, e.g., for activity masking
 - Useful for temporal RDO, e.g., MV-tree
 - Temporal prediction
 - Useful for predicting temporal properties, e.g., skip
Deblocking Filter

● Similar to what is in VP9
● Changed the order edges are filtered to make hardware easier
● More flexible strength signaling
 ○ Separate H + V strength for luma
 ○ Separate C_b and C_r strengths for chroma
 ○ Can be adjusted on a per-super block basis
● NB: deblocking filter crosses tile boundaries
Constrained Directional Enhancement Filter (CDEF)

- Merge of Daala’s directional deringing filter (DERING) and Thor’s constrained lowpass filter (CLPF)
 - Both encoder and decoder search for the direction that best matches
 - Primary filter run along direction, and secondary conditional replacement filter run orthogonally
 - Strength is signaled in the bitstream
- Results exceed both DERING and CLPF alone, as well as applying DERING + CLPF sequentially
Loop Restoration

- Enhanced and simplified loop filters from VP10
- Two filter choices per superblock
 - Separable Wiener filter with explicitly coded coefficients
 - Self-guided filter
- Runs in a separate pass after CDEF
 - Showed best metrics of any approach tested
 - Uses deblocking filter output outside of superblock boundaries to minimize line buffers
Spatial and Temporal Scalability

- Each frame can have a `spatial_id` and a `temporal_id`
 - When `spatial_id = 0` and `temporal_id = 0` it is called a base layer
 - When `spatial_id > 0` and `temporal_id > 0` it is called an enhancement layer
- Idea is that decoder will simply display the frames from the highest layer
 - Higher layer frames can reference lower layer frames
- Designed to be used by a special “Selective Forwarding Unit” server that hands out the appropriate scalable layer to a client
Frame Super-Resolution

- Not actually super-resolution
- Instead
 - Code at reduced resolution
 - Run deblocking filter and CDEF, but not Loop Restoration filter
 - Upsample with simple upscaler
 - Run Loop Restoration filter at full resolution
- Only horizontal resolution reduction allowed
 - Simplifies hardware (no new line buffers)
- Allows for gradual bitrate scaling
Film Grain Synthesis

- Grain parameters signaled per frame
- Synthesized film grain applied after decoding (not in loop)
- Could be applied using GLSL + PRNG based texture
AOM Members / Hardware

- Adobe
- Allegro
- Amazon
- AMD
- @mlogic
- Apple
- Argon Design
- ARM
- Ceteme
- BBC Research & Development
- Bitmovin
- Broadcom
- Chips & Media
- Cisco
- Facebook
- Google
- Hulu
- IBM
- Intel
- Ittiam
- Microsoft
- Mozilla
- Netflix
- NGCodec
- NVIDIA
- Polycom
- Realtek
- Sigma Designs
- VeriSilicon
- VideoLAN
- Vidyo
- Xilinx
Designed for Hardware Implementations

Hardware members involved from the very beginning
Feedback incorporated into a number of tools
- Per symbol probability adaptation
- Smaller multipliers in entropy coder
- Single pass bitstream writing
- Fewer line buffers in CDEF and LR
- Only allow horizontal scaling for super-resolution
AOM Members / Real-Time Conferencing
Designed for Low-Latency

Per symbol adaptation replaces symbol counts in VP9
Can write bitstream with subframe latency
Removed signaling from frame header that forced whole frame buffering
Designed for Broadcasters?

- Decoder rate model
 - Guarantee buffer size
 - Limit the use of alt-ref’s to ensure decodability
 - Verifiable (See Annex E of the spec document)

- Support for AV1 coming to hardware
 - Smart TV’s will want to play Netflix, Hulu, YouTube, etc.

- Start with AV1 in the broadcasting stack
 - Can leverage industry investment in hardware, software, tooling, etc.
 - Easier to expand into streaming market
Moscow State University (SSIM - June 2017)

Facebook Study (April 2018)

AV1 Compression History
AV1 Complexity History
Questions?