
Mozilla

Introduction to Video Coding
Part 1: Transform Coding

Mozilla2

Video Compression Overview
● Most codecs use the same basic ideas

1) Motion Compensation to eliminate temporal
redundancy

⊖ =

Input Reference frame Residual

Mozilla3

Video Compression Overview
2) A 2D transform (usually the DCT) to eliminate

spatial redundancy
Input Data

156 144 125 109 102 106 114 121
151 138 120 104 97 100 109 116
141 129 110 94 87 91 99 106
128 116 97 82 75 78 86 93
114 102 84 68 61 64 73 80
102 89 71 55 48 51 60 67
92 80 61 45 38 42 50 57
86 74 56 40 33 36 45 52

Transformed Data
700 100 100 0 0 0 0 0
200 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Mozilla4

Video Compression Overview
3) Quantization to throw out unimportant details

(this is the “lossy” part)

4) Lossless compression to store the result
efficiently

Mozilla5

The Ideal Linear Transform
● Karhunen-Loève Transform (KLT)

– See also: Principal Component Analysis (PCA)

– Just a change-of-basis (like any other linear
transform)

● Transforms, e.g., an 8×8 block of pixels into 64
coefficients in another basis

– Goal: A sparse representation of the pixel data

– Pick basis vectors one by one minimizing the
distance of the data from the subspace they span

● Equivalently: maximizing the percent of the data’s
variance contained in that subspace

Mozilla6

Karhunen-Loève Transform
● Mathematically:

– Compute the covariance matrix

– Compute the eigenvectors of R
xx

● Sort by magnitudes of the eigenvalues

– Project pixel data onto the eigenvectors

● Transform is data-dependent
– So we need data to estimate it from

– And would need to transmit the eigenvectors

Rxx=
1
N
∑
i=0

N−1

x i− T⋅xi− 

Mozilla7

Transforming Natural Images
● Image data is highly correlated

– Usually modeled as a first-order autoregressive
process (an AR(1) process)

– Produces a simple cross-correlation matrix:

Correlation Coefficient Gaussian Noise

(typically)x i= x i−1 , =0.95

R xx=[
1  

2


3
⋯

 1  
2

 2  1 

 3  2  1
⋮ ⋱

]

Mozilla8

The Discrete Cosine Transform
● If we assume this model holds for all image

blocks, can design one transform in advance
– This is the Discrete Cosine Transform (DCT)

● 1-D Basis Functions (for an 8-point transform):

● Orthonormal, so inverse is just the transpose

DC AC...

Mozilla9

The DCT in 2D
● In 2D, first transform rows, then columns

– Y = G·X·GT

● Basis functions:
● Two 8x8 matrix

multiplies is
1024 mults,
896 adds
– 16 mults/pixel

Mozilla10

Fast DCT
● The DCT is closely related to the Fourier

Transform, so there is also a fast decomposition
● 1-D: 16 mults, 26 adds

● 2-D: 256 mults, 416 adds (4 mults/pixel)

-

-

-

-

-

-

-

-

-

-

C4

C4

C6 -S6

C6

S6

C7

S7

C7
-S7

C3 -S3

C3

S3

C4

C4
0

4

2

6

5

3

7

1

0

1

2

3

4

5

6

7

Mozilla11

DCT Example

Shamelessly stolen from the MIT 6.837 lecture notes:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture03/Slide30.html

Input Data
156 144 125 109 102 106 114 121
151 138 120 104 97 100 109 116
141 129 110 94 87 91 99 106
128 116 97 82 75 78 86 93
114 102 84 68 61 64 73 80
102 89 71 55 48 51 60 67
92 80 61 45 38 42 50 57
86 74 56 40 33 36 45 52

Transformed Data
700 100 100 0 0 0 0 0
200 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Mozilla12

Coding Gain
● Measures how well energy is compacted into a

few coefficients

Cg=10 log10

 x
2

∏
i=0

N−1

 y i

2
∥hi∥

2
1
N

Variance of the input

Variance of the i th
transform coefficient

Magnitude of corresponding
inverse basis function

Mozilla13

Coding Gain (cotd.)
● Calculating from a transform matrix and a

cross-correlation matrix:

● Coding gain for zero-mean, unit variance AR(1)
process with ρ = 0.95

Cg=10 log10
1

∏
i=0

N−1

GRxxG
T
ii×H T H ii 

1
N

4-point 8-point 16-point

KLT 7.5825 dB 8.8462 dB 9.4781 dB

DCT 7.5701 dB 8.8259 dB 9.4555 dB

Mozilla14

Quantization
● Divide each coefficient by a quantizer

– Integer division, with rounding

● Only required lossy step in the entire process
– {700, 100, 200, 0, … }/32 → {22, 3, 6, 0, …}

– Error: {22, 3, 6, 0, ...}×32 → {704, 96, 192, 0, ...}

● Resulting list has lots of zeros and small
coefficients

– That’s what makes it easy to compress

Mozilla15

The Contrast Sensitivity
Function

● Contrast perception varies by spatial frequency

Mozilla16

Quantization Matrices
● Choose quantizer for each

coefficient according to the CSF
– Example matrix:

● But that’s at the visibility threshold
– Above the threshold distribution more even

● Most codecs vary quantization by scaling a
single base matrix

– Will always be less than ideal at some rates

– Theora has a more flexible model

Quantization Matrix
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 58 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Mozilla17

Blocking Artifacts
● When we have few bits, quantization errors

may cause a step discontinuity between blocks
– Error correlated along block edge → highly visible

Low-bitrate Theora with loop filter disabled

Mozilla18

Blocking Artifacts
● Standard solution: a “loop” filter

– Move pixel values near block edges closer to each
other

Low-bitrate Theora with loop filter enabled

Mozilla19

Ringing Artifacts
● Any quantization error is spread out across an

entire block
● In smooth regions near edges, easily visible
● HEVC plans to

add in-loop filters
for this, too

Mozilla20

Low-pass Artifacts
● HF coefficients get quantized more coarsely,

and cost lots of bits to code
– They’re often omitted entirely

● Resulting image lacks details/texture
● Not often treated as a class of artifact

– Low-pass behavior looks good on PSNR charts
● This is one reason PSNR is a terrible metric

Mozilla21

Low-pass Artifacts

● Low-passed skin tones
(from original VP3
encoder)

● Better retention of HF
(from Thusnelda
encoder)

Mozilla22

Transform Size
● How do we pick the size of the blocks?

– Computation is N log N
● Larger blocks require more operations per pixel

– Larger blocks allow us to exploit more correlation
● Better compression

– Except when the data isn’t correlated (edges)
● Smaller blocks → fewer overlap edge → less ringing

● Variable block size
– H.264: 8x8 and 4x4, HEVC: may add 16x16

Mozilla23

The Time-Frequency Tradeoff
● Raw pixel data has

good “time” (spatial)
resolution

● The DCT has good
frequency resolution

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy
● Tilings of the “Time-Frequency Plane”

depict this trade-off
– ΔT×ΔF ≥ constant

Mozilla24

Leakage
● In reality partition boundaries are not perfect

Frequency Response of 8-point DCT basis functions

Mozilla25

Wavelets
● Good LF resolution (models correlation well)
● Better time resolution in HF (prevents ringing)
● Smooth basis functions (no blocking artifacts)

Time

F
re

qu
en

cy

Wavelet tiling of the time-frequency plane

Mozilla26

Wavelets (cotd.)

● Wavelets break down at low rates
– HF “texture” requires spending even more bits to

code it separately at every position

– Extreme low-passing is typical

● Good for large-scale correlations (but Dirac
doesn’t use them for this)

Original Dirac @ 67.2 kbps Theora @ 17.8 kbps

Mozilla27

Wavelets (cotd.)
● Can do much better... but this is hard

House at 0.1 bpp from D. M. Chandler and S. S. Hemami: “Contrast-
Based Quantization and Rate Control for Wavelet-Coded Images.” In
Proc. Of the 5th International Conference on Image Processing
(ICIP’02), vol. 3, pp. 233–236, June 2002.

Fixed Quantizers Contrast-based Adaptation

Mozilla28

Lapped Transforms
● Can eliminate blocking artifacts entirely

– Like wavelets, but keep good DCT structure

– Same idea has been used in audio forever

● Overlap basis functions with neighboring blocks
● Basis functions decay to zero at edges

Synthesis basis functions for 4-point lapped transform with 50% overlap

Mozilla29

Lapped Transforms
● No need for transform to be orthogonal
● Separate analysis and synthesis filters

Synthesis basis functions for 4-point lapped transform with 50% overlap

Analysis basis functions for 4-point lapped transform with 50% overlap

Mozilla30

Lapped Transforms: Prefilter
● Implemented with a prefilter in the encoder

– A linear transform that straddles block edges

– Removes correlation across edge

– Inverse applied in the decoder

P

DCT

DCT

P

P

DCT

DCT

IDCT

IDCT

IDCT

IDCT

P-1

P-1

P-1

Prefilter Postfilter

Mozilla31

Lapped Transforms: Prefilter
● Prefilter makes things blocky

● Postfilter removes blocking artifacts
– Like loop filter, but invertible

● And simpler: no conditional logic to control filter strength

Mozilla32

Lapped Transforms
● Cheaper than wavelets

– 8x16 LT: 3.375 muls/pixel (minus loop filter)

– 9/7 Wavelet (3 levels): 5.25 muls/pixel

● Better compression

● Can keep most of block-based DCT
infrastructure

4-point 8-point 16-point

KLT 7.5825 dB 8.8462 dB 9.4781 dB

DCT 7.5701 dB 8.8259 dB 9.4555 dB

LT 8.6060 dB 9.5572 dB 9.8614 dB

9/7 Wavelet 9.46 dB

Mozilla33

Lapped Transforms
● Early experiments (by Greg Maxwell) suggest it

works!
● But others don’t think so

– On2/Google (private communication)

– Charles Bloom:
http://cbloomrants.blogspot.com/2009/07/07-06-09-small-image-compression-notes.html

● “Obviously in a few contrived cases it does help, such
as on very smooth images at very high compression...
In areas that aren't smooth, lapping actually makes
artifacts like ringing worse. ”

● This doesn’t match published examples: Barbara
(heavily textured) gets much more benefit than Lena
(smooth)

http://cbloomrants.blogspot.com/2009/07/07-06-09-small-image-compression-notes.html

Mozilla34

TF Resolution Switching
● Recursively apply DCT/IDCT to

increase/decrease frequency resolution
– Can apply to just part of the spectrum

– Idea stolen from CELT/Opus (audio)

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy

Splitting Merging

Mozilla35

TF Resolution Switching
● Potential benefits

– Can spread texture over larger regions
● Only apply to HF: less complex than larger transform

– Can capture large-scale correlation better
● Like LF wavelet bands, but without the HF problems

– Can reduce the number of transform sizes needed

● Cost
– Signaling (need to code per-band decision)

– Encoder search (more possibilities to consider)

Mozilla36

TF Resolution: Splitting
● Better time resolution → reduced ringing

– But not as good as using a smaller transform

8-point Lapped Transform basis functions after TF splitting

Mozilla37

TF Resolution: Merging
● Better frequency resolution → better coding gain

– But not as good as a larger transform
● 25% overlap vs. 50% → effectively using smaller window

8-point Lapped Transform basis functions after TF merging
(first 8 only)

Mozilla38

Intra Prediction
● Predict a block from its causal neighbors
● Explicitly code a direction along which to copy
● Extend boundary of neighbors into new block

along this direction

Mozilla39

Intra Prediction (cotd.)

Mozilla40

Intra Pred. vs. LT
● Intra pred. and LT have

similar roles
– Both exploit correlation

with neighboring blocks

● But very different
mechanisms

– Best depends on image
R. G. de Oliveira and R. L. de Queiroz: “Intra
Prediction versus Wavelets and Lapped
Transforms in an H.264/AVC Coder.” In Proc.
15th International Conference on Image
Processing (ICIP’08), pp. 137–140, Oct. 2008.

Mozilla41

Intra Pred. vs. LT
● Combine lapped transforms with intra pred.

– Better than either alone

– Despite predicting from farther away with only 4
of 9 modes (pixels not available for others)

R. G. de Oliveira and B. Pesquet-
Popescu: “Intra-Frame Prediction
with Lapped Transforms for
Image Coding.” In Proc. of the
36th International Conference on
Acoustics, Speech, and Signal
Processing (ICASSP’11), pp.
805–808, May 2011.

Mozilla42

Intra Prediction as Transform
● Generalize using idea of separate analysis &

synthesis filters

● Can train optimal
transforms using standard
techniques (similar to KLT)

– J. Xu, F. Wu, and W. Zhang: “Intra-Predictive Transforms for Block-
Based Image Coding.” IEEE Transactions on Signal Processing
57(8):3030–3040, Aug. 2009.

Domain of
analysis basis
functions

Range of
synthesis basis
functions

Mozilla43

Intra Pred. in Frequency Domain
● Optimal KLT-like transforms are not sparse

– May not even be separable
● E.g., 64×64 matrix multiply for 8×8 transform

● Idea: Use a standard transform, predict in
frequency domain

– Signals are sparse in frequency domain, so we
should be able to enforce sparsity of predictor

● Works with lapped transforms without
restrictions

– Don’t have to worry about which pixels are
available, etc.

Mozilla44

Intra Prediction Limitations
● Intra prediction one of main innovations of H.264
● But how is it actually used?

– Most common mode is “DC” mode, which has no
orientation, and just uses one value for all pixels

– Next is “horizontal” and “vertical”
● These align well with the DCT basis functions, so you

can fix things cheaply when it screws up

– Diagonal modes only really useful on strong edges
● Prediction only uses the edge of a block
● Can’t extend texture, not needed for smooth regions

Mozilla45

Intra Prediction Improvements
● VP8: “TM” mode: P = T + L – TL

– Predicts gradients well, used over 50% of the time

● HEVC proposals:
– More orientations (clustered around H and V)

– Multi-stage:
● Predict 1 out of 4 pixels
● Decode residual for those pixels
● Extend prediction into remaining pixels
● Effectively restricts prediction to LF

– Orientation-adaptive transforms for residual

Mozilla46

Orientation-Adaptive Transforms
● Some images have many diagonally-oriented

features
– Including output of diagonal intra predictors

● Not compactly represented by DCT
– Design custom transforms for each orientation

● Lots of research over past 6 or 7 years
– Issues (some solved, some not): separability, data

dependencies, fast implementations, coefficient
ordering, etc.

Mozilla47

Orientation Coding Gain
● Looks impressive (at least at 45°), but...

Mozilla48

Orientation Adaptive vs. Intra
Pred. and Adaptive Block Size

Intra prediction +
Adaptive Block Size

Orientation Adaptive
+Adaptive Block Size

Everything

Highly-oriented
images

Normal test
image

Adaptive Block Size

Fixed Block Size

Mozilla49

Additional References
● H.S. Malvar: “Extended Lapped Transforms: Properties, Applications, and Fast

Algorithms.” IEEE Transactions on Acoustics, Speech, and Signal Processing,
40(11):2703–2714, Nov. 1992.

● T.D. Tran: “Lapped Transform via Time-Domain Pre- and Post-Filtering.” IEEE
Transactions on Signal Processing 51(6):1557–1571, Jun. 2003.

● W. Dai and T.D. Tran: “Regularity-Constrained Pre- and Post-Filtering for Block
DCT-based Systems.” IEEE Transactions on Signal Processing 51(10):2568–
2581, Oct. 2003.

● J. Hu and J.D. Gibson: “New Rate Distortion Bounds for Natural Videos Based
on a Texture Dependent Correlation Model.” In Proc. 46th Allerton Conference on
Communication, Control, and Computing, pp. 996–1003, Sep. 2008.

● J. Han, A. Saxena, and V. Melkote: “Jointly Optimized Spatial Prediction and
Block Transform for Video and Image Coding.” IEEE Transactions on Image
Processing (pre-print), Sep. 2011.

● C.-L. Chang: “Direction-Adaptive Transforms for Image Compression.” Ph.D.
Thesis, Stanford University, Jun. 2009.

Mozilla50

Questions?

Mozilla

Introduction to Video Coding
Part 2: Entropy Coding

Mozilla52

Review

Input Data
156 144 125 109 102 106 114 121
151 138 120 104 97 100 109 116
141 129 110 94 87 91 99 106
128 116 97 82 75 78 86 93
114 102 84 68 61 64 73 80
102 89 71 55 48 51 60 67
92 80 61 45 38 42 50 57
86 74 56 40 33 36 45 52

Transformed Data
700 100 100 0 0 0 0 0
200 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DCT

P

DCT

DCT

P

P

DCT

DCT

IDCT

IDCT

IDCT

IDCT

P-1

P-1

P-1

Prefilter Postfilter

Lapped
Transforms

Mozilla53

Review (cotd.)

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy

Splitting Merging

TF
Resolution
Switching

Intra
Prediction

Mozilla54

Shannon Entropy
● Minimum number of bits needed to encode a

message given the probability of its symbols

● Represents the limit of lossless compression
C. E. Shannon: “A Mathematical Theory of Communication.” The
Bell System Technical Journal, 27(3-4): 379–423, 623–656, Jul.,
Oct. 1948.

H  X =−∑
i=1

n

p x ilog2 p xi

Mozilla55

Two Questions
● How do we know p(x

i
)?

– More on this later
● How close to this rate can we actually

compress data?

– We’ll tackle this first
– Two approaches worth discussing

● Huffman coding (fast)
● Arithmetic coding (better compression)

Mozilla56

Huffman Codes
● Also known as

– Variable-Length Codes

– Prefix-free Codes

● Basic idea
– Vary the number of bits per symbol

– Use fewer bits for more frequent symbols

– Use more bits for rare symbols
D. A. Huffman: “A Method for the Construction of Minimum-
Redundancy Codes.” Proceedings of the Institute for Radio
Engineers, 40(9): 1098–1101, Sep. 1952.

Mozilla57

Huffman Code Construction
● Take the two least probable

symbols and put them in a
binary tree with “0” and “1”
branches

● Set the probability of the
parent equal to the sum
of its childrens’, and put
it back in the list

● Repeat until there’s only one
item left in the list...

Symbol Frequency Probability

A 8 2/3

B 2 1/6

C 1 1/12

D 1 1/12

C D

P
0 1

Symbol Probability

A 2/3

B 1/6

P 1/6

Mozilla58

Huffman Code Construction
● Follow the path from the root to

get each leaf’s codeword
● Bits per symbol:

– 1.5 bits (25% compression)

– Entropy: 1.42 bits/symbol

● Huffman models the distribution
– As if probs are (1/2, 1/4, 1/8, 1/8)

– Instead of (2/3, 1/6, 1/12, 1/12)

● Called “cross-entropy”
– Gap called Kullback-Leibler Divergence

Symbol Codeword

A 0

B 10

C 110

D 111

C D

P
0 1

B

Q
0 1

A

R
0 1

∑
i=1

n

p xi length x i

Mozilla59

Huffman Code Problems
● Only optimal when probabilities are powers of 2

– Can’t represent probabilities greater than 1/2!

– Code multiple symbols at once to approach bound
● But size of code grows exponentially

● Not adaptive when distribution not known
– Code construction is slow: O(N log N)

– Need to either pick a fixed code (suboptimal) or
transmit the code to use (overhead)

– Adaptive versions exist, but still slow and complex

Mozilla60

Huffman Coding in Video
● Some form of VLC used in every standard from

H.261 (1988) to H.264-MVC (2009).
● Video is not text compression

– There are many different kinds of symbols that
need to be encoded

● Macroblock modes, motion vectors, DCT coefficient
values, signs, run lengths, etc.

– The size of the alphabet can differ for each one

– They have vastly different probability distributions

– Need to change which code we’re using on a
symbol-by-symbol basis

Mozilla61

Huffman Coding in Video
● Video is not text compression (cotd.)

– We know the resolution of the video

– Hence we know exactly when to stop reading
more symbols

– No need to reserve special values to mark the end
of the stream

– By convention, we can use zeros if we run out of
input bits

● Can strip trailing zeros from the output

Mozilla62

Huffman Coding in Video
● Theora

– Codes for block flags, MB modes, MVs fixed

– Codes for DCT coefficients (the bulk of the data)
transmitted in a stream header

● Different codes used for various coefficients
● Can pick which set to use on a frame-by-frame basis

● H.264: CAVLC (“Context Adaptive”)
– Fixed set of codes to choose from

– Choice is made based on previously decoded
symbols (the “context”)

Mozilla63

Huffman Decoding
● Read bits one at time, traverse tree (slow)
● Finite State Machine

– Current state is the index of an interior node of the
Huffman tree

– Read n bits, use LUTs to get new state and a list
of zero or more decoded symbols

– Can choose n independent of code lengths

– Fastest method, but need to know which code
subsequent symbols will use

● This decision may be very complex

Mozilla64

Huffman Decoding: libtheora
● Traverse multiple levels of the tree with a LUT

– Peek ahead n bits

– Use a LUT to find
● The node in the tree

(up to n levels down)
● How many bits to consume

– Example: 2-bit table → 5/6 of
symbols need only one lookup

● Usually one well-predicted branch per symbol

– n trades off table size (cache) and branches
● Use a larger value for the root node

Bits Node Depth

00 A 1

01 A 1

10 B 2

11 P 2

Bits Node Depth

0 C 1

1 D 1

Mozilla65

Arithmetic Coding
● Inefficiency of Huffman codes comes from

using a whole number of bits per codeword
● Arithmetic coding doesn’t partition the code

space on bit boundaries
– Can use fractional bits per codeword

● Gets very close to the Shannon bound
– Limited only by the precision of the arithmetic

Mozilla66

Huffman Coding Revisited
● Imagine bitstream as a binary number in [0, 1)
● Code the message “ABC”

0

1

A

B

C

D

Range: [0,1)

0 5 10

Mozilla67

Huffman Coding Revisited
● Imagine bitstream as a binary number in [0, 1)
● Code the message “ABC”

0

1

A

B

C

D

Range: [0, 1/2)
{in binary: [0.0, 0.1)}

0 5 10

All messages
that start with A
fall in this range

Mozilla68

Huffman Coding Revisited
● Imagine bitstream as a binary number in [0, 1)
● Code the message “ABC”

0

1

A

B

C

D

AB

AA

AC
AD

BB

BA

BC
BD

CB

CA
CC
CD

DB

DA
DC
DD

Range: [2/8, 3/8)
{in binary: [0.010, 0.011)}

0 5 10

Mozilla69

Huffman Coding Revisited
● Encode message with shortest number in range

● Number of bits ≤ -log⌈
2
(Range) = -log⌉

2
(1/64) = 6

0

1

A

B

C

D

AB

AA

AC
AD

ABA

AAB

AAA

AAC
AAD

BB

BA

BC
BD

CB

CA
CC
CD

DB

DA
DC
DD

Range: [22/64, 23/64)
{in binary: [0.010110, 0.010111)}

BAB

BAA
BAC
BAD

BBB
BBA

BBC
BBD

BDB

BDA
BCB

BCA

CAB
CAA

CAC
CAD

DAB
DAA

DAC
DAD

CBB

CBA

CDA

CCA

DBB

DBA

DDA

DCA

ABB
ABC
ABD

0 5 10

Mozilla70

Arithmetic Coding
● No need for intervals to be powers of two

● Number of bits ≤ -log⌈
2
(1/108) = 6.75 = 7⌉ ⌈ ⌉

0

1

A

B

C
D

AA

AB
AC
AD

BA
BB

BC
BD

DA
DB

DC
DD

CA
CB

CC
CD

ABA
ABB

ABC
ABD

AAA

AAB
AAC
AAD

ADA
ADB

ACA
ACB

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

DAA
DAB

DBA

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

CAA
CAB

CBA

Range: [58/108, 59/108)

0 5 10

Mozilla71

Arithmetic Coding
● No need for intervals to be powers of two

● Number of bits ≤ -log⌈
2
(1/108) = 6.75 = 7⌉ ⌈ ⌉

0

1

A

B

C
D

AA

AB
AC
AD

BA
BB

BC
BD

DA
DB

DC
DD

CA
CB

CC
CD

ABA
ABB

ABC
ABD

AAA

AAB
AAC
AAD

ADA
ADB

ACA
ACB

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

DAA
DAB

DBA

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

CAA
CAB

CBA

Range: [58/108, 59/108)

0 5 10

AAA dropped from 3 bits to 1.75

Mozilla72

Arithmetic Coding
● Can represent entire message with shortest

number (most trailing zeros) that lies in range
● Infinite precision arithmetic called “Elias

Coding”
– Gets within 1 bit of Shannon bound

● Real arithmetic coding uses finite-precision
– Use a “sliding window” that gets rescaled

● L = lower bound of range, R = size of range

Mozilla73

5-bit Window (Encoding)
● Example: L = 0, R = 21, want to code B

0

1

A

B

C
D

0 5 10

21/32

window

Mozilla74

5-bit Window (Encoding)
● Partition R proportional to probabilities
● Update: L=14, R=3

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10

21/32

window

14/32

17/32
19/32
21/32

R=3

Mozilla75

5-bit Window (Encoding)
● Double L and R until R ≥ 16
● Renormalize: output: 0 ← L=28, R=6

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

28/64

34/64

Mozilla76

5-bit Window (Encoding)
● Double L and R until R ≥ 16
● Renormalize: output: 01 ← L=24, R=12

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

Mozilla77

5-bit Window (Encoding)
● Double L and R until R ≥ 16
● Renormalize: output: 011 ← L=16, R=24

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

Mozilla78

5-bit Window (Encoding)
● Carry propagation: L can exceed 32
● Update: output: 011, L=36, R=2

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

ABA
ABB

ABC
ABD

Mozilla79

5-bit Window (Encoding)
● Carry propagation: L can exceed 32
● Update: output: 100, L=4, R=2

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

ABA
ABB

ABC
ABD

Mozilla80

5-bit Window (Encoding)
● Then renormalize like normal
● Renormalize: output: 100001 ← L=0, R=16

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

ABA
ABB

ABC
ABD

Mozilla81

5-bit Window (Decoding)
● Decoding: Read bits into C, find partition it’s in
● L=0, R=21, C=16 ← input: 100001

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10

21/32

window

14/32

17/32
19/32
21/32

R=3

Decode a B

Mozilla82

5-bit Window (Decoding)
● Update: Same calculations as encoder
● L=14, R=3, C=16, input: 100001

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10

21/32

window

14/32

17/32
19/32
21/32

R=3

Mozilla83

5-bit Window (Decoding)
● Renormalize: Shift more bits into C
● L=16, R=24, C=4 ← input: 10000100

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

Mozilla84

5-bit Window (Decoding)
● If C isn’t in [L, L+R), borrow (inverse of carry)
● L=16, R=24, C=36 ← input: 10000100

0

1

A

B

C
D

AA

AB
AC
AD

0 5 10
window

Mozilla85

Arithmetic Coding: That’s it!
● Variations

– Renormalize 8 bits at a time (“Range Coding”)
● Byte-wise processing is faster in software

– Binary: Less arithmetic, no search in decoder
● Lots of optimizations and approximations only work

with binary alphabets
● This is what all current video codecs use

● Partition functions...

Mozilla86

Partition Functions
● Splits R according to cumulative frequency

counts:

● (“CACM” coder, Witten et al. 1987)

c i=∑
k=0

i−1

f k total=c N

f i=frequency of i th symbol

R R∗ci / total
f
0

f
1

f
2

f
3

total = 12

R = 32
0 21 26 29 32

Mozilla87

Partition Functions (cotd.)
● (Moffat et al. 1998)

– Better accuracy for fixed register size, one less div

– Over-estimates the probability of the last symbol
● The error is small as long as total << R (less than 1%

given 6 bits of headroom)

R R / total ∗c

f
0

f
1

f
2

f
3

total = 12

R = 32
0 16 20 22 32

Rounding error(R/total)*f
0

Mozilla88

Partition Functions (cotd.)
●

– Stuiver and Moffat 1998

– Requires total ≤ R < 2*total (shift up if not)

– Distributes rounding error more evenly
● But always has a significant amount

R max c ,2∗c−total R

f
0

f
1

f
2

f
3

total = 12 (scale by 2 to get 24 ≤ 32 < 48)

R = 32
0 16 24 28 32

under-estimated over-estimated

Mozilla89

Partition Functions (cotd.)
● Table-driven (e.g., CABAC)

– No multiplies or divides

– Binary alphabets only

– Small set of allowed c
i
’s

– R restricted to 256...511, only bits 6 and 7 used

● Truncation error can be as large as 25%
– All added to the MPS, can waste 0.32 bits for LPS

R {
0, ci=0
rangeTabLPS [indexOf ci][⌊R /64 ⌋mod 4] , 0citotal
R ci=total

Mozilla90

Arithmetic Coding References
● J.J. Rissanen: “Generalized Kraft Inequality and Arithmetic Coding.” IBM

Journal of Research and Development, 20(3): 198–203, May 1976.

● I.H. Witten, R.M. Neal, and J.G. Cleary: “Arithmetic Coding for Data
Compression.” Communications of the ACM, 30(6): 520–540, Jun. 1987.

● A. Moffat, R.M. Neal, and I.H. Witten: “Arithmetic Coding Revisited.”
ACM Transactions on Information Systems, 16(3): 256–294, Jul. 1998.

● L. Stuiver and A. Moffat: “Piecewise Integer Mapping for Arithmetic
Coding.” In Proc. 8th Data Compression Conference (DCC ‘98), pp. 3–12,
Mar. 1998.

● D. Marpe, H. Schwarz, and T. Wiegand: “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard.”
IEEE Transactions on Circuits and Systems for Video Technology, 13(7):
620–636, Jul. 2003.

● http://people.xiph.org/~tterribe/notes/range.html

http://people.xiph.org/~tterribe/notes/range.html

Mozilla91

Questions?

Mozilla

Introduction to Video Coding
Part 3: Probability Modeling

Mozilla93

Review: Huffman Coding
● Relatively fast, but probabilities

limited to power of 2
● LUTs can traverse

multiple levels of tree
at a time for decoder

● FSM even faster, but
limited to a single
codebook

C D

P
0 1

B

Q
0 1

A

R
0 1

1 1

22

48

12

Bits Node Depth

00 A 1

01 A 1

10 B 2

11 P 2

Bits Node Depth

0 C 1

1 D 1

Mozilla94

Review: Arithmetic Coding
● Efficient for any probabilities, but somewhat slow

– Binary coders simplest, larger alphabets require more
arithmetic, codebook search

0

1

A

B

C
D

AA

AB
AC
AD

BA
BB

BC
BD

DA
DB

DC
DD

CA
CB

CC
CD

ABA
ABB

ABC
ABD

AAA

AAB
AAC
AAD

ADA
ADB

ACA
ACB

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

DAA
DAB

DBA

BAA
BAB

BAC
BAD

BBA
BBB

BDA

BCA

CAA
CAB

CBA

Range: [58/108, 59/108)

0 5 10

AAA dropped from 3 bits to 1.75

Mozilla95

Modeling
● “Modeling” assigns probabilities to each symbol

to be coded
● Arithmetic coding completely separates modeling

from the coding itself
– This is its biggest advantage

● Basic approach: partition symbols into “contexts”
– Can switch from context to context on every symbol

● Model the distribution within a context as if it
were independently, identically distributed (i.i.d.)

Mozilla96

Context Modeling
● How do we get (approximately) i.i.d. Data?

– Partition it into “contexts” based on the observed
values of a symbol’s neighbors

– Each context has its own probability estimator:
P(x|y

1
,...,y

k
)

● Having a separate context for each possible set
of values of y

1
,...,y

k
 models the dependence of x

on y
1
,...,y

k

Mozilla97

Context Modeling
● Example: A “skip macroblock” flag

– Skipping is more likely if neighbors were also
skipped

● Let c = 2×skip
above

 + skip
left

 be the context index

– Use four different probability estimators, one for
each c

– All macroblocks with the same value of c code their
skip flag using the same probability estimator

● But... how do we estimate probabilities?

Mozilla98

Frequency Counts
● Most basic adaptive model

– Initialize f(x
i
) = 1 for all x

i

– Each time x
i
 is decoded, add 2 to f(x

i
)

– p(x
i
) = f(x

i
) / total, where total = ∑f(x

j
)

● Why add 2 instead of 1?
– Minimizes worst-case inefficiency

● Is that the right thing to minimize?

– Called a Krichevsky-Trofimov estimator
(Krichevsky and Trofimov ‘81)

Mozilla99

Frequency Counts in Practice
● Rescaling

– When total grows too large, scale all counts by ½
(rounding up to keep them non-zero)

● Distributions not exactly i.i.d.
– Can imply the need for a faster learning rate

– Faster learning implies more frequent rescaling →
Faster forgetting

● Optimal learning rate varies greatly by context
● Biggest drawback: total not a power of 2

(divisions!)

Mozilla100

Finite State Machine
● Only used for binary coders
● Each state has associated probabilities and

transition rules
– LUT maps state and coded symbol to new state

● Example: CABAC (64 states plus reflections)

– p
0
 = 0.5, p

σ
 = αp

σ-1
, α = (3/80)1/63 ≈ 0.949217

● Defines probability of “Least Probable Symbol”

● Probability of “Most Probable Symbol” is (1 – p
σ
)

– Transitions: pnew={ Quantize  pold , Coded MPS
Quantize 1−1− pold  , Coded LPS

Mozilla101

CABAC Transitions

Mozilla102

QM Coder (JPEG) Transitions
● “State” can include a notion of learning rate

Probability State Index

LP
S

 P
ro

ba
bi

lit
y

Mozilla103

Designing the FSM
● FSMs are popular (JPEG, JBIG, H.264, Dirac,

OMS), but very little research on their design
● Existing methods based on theory, not data
● But it looks much like a classic machine-

learning problem: Hidden Markov Models
– Hidden (unobserved) state (e.g., the learning rate)

– Each state has an unknown probability distribution
over the possible (observed) outputs

– Good training algorithms exist
● Baum-Welch (1970)
● Baldi-Chauvin (1994)

Mozilla104

Binarization
● All existing video standards use binary alphabets

– But we want to code non-binary values

● Binarization: converting an integer to bits
– Want to code as few symbols as possible, on

average (for speed and modeling efficiency)

– Compression comes from arithmetic coder
● Binarization doesn’t need to be perfect

Mozilla105

Exp-Golomb Codes
● Binarization method for many

syntax elements
– Four types: unsigned, signed,

“coded_block_pattern”, and
“truncated”

● Not optimal, but relatively simple
– Strongly prefers 0’s (coding a 1 takes 3 symbols!)

● Also uses unary, truncated unary, fixed-length,
and for MB/sub-MB type a custom code

Bit String Value(s)

0 0

10x 1...2

110xx 3...6

1110xxx 7...14

11110xxxx 15...30

111110xxxxx 31...62

Mozilla106

VP8 “Tree Coder”
● Binarization is the Huffman

coding problem!
– Uses Huffman trees for most

syntax elements

● Each internal node is coded in
its own context

– But decision on which set of
contexts to use is made once, for
the whole tree

VE

0 1
TM

0 1
DC

0 1

0 1

HE

0 1

RD VR

0 1
LD

0 1

VL

0 1

HD HU

0 1

Example: Tree
for per-block
intra modes

Mozilla107

Binary FSM vs. Freq. Counts
● If a symbol can have N values,

its distribution has N-1 degrees
of freedom (DOFs)

– Binary contexts: one per binary tree internal node

– Frequency counts: one per value, minus one constraint
(probabilities sum to 1)

● When values are correlated, binary contexts
adapt more quickly

– Taking a branch raises the probability of everything on that
side of the tree

– Example: seeing a MV pointing up means it’s more likely to
see other MVs that point up

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Mozilla108

Context Dilution
● What is the cost of adaptation?

– Learning probabilities adds (roughly) log(N) bits of
overhead per DOF to code N symbols

● Assumes a static distribution... doesn’t count the cost
of re-learning if the distribution changes

● How does the number of contexts impact this?
– Lots of dependencies means lots of contexts

– Lots of contexts means few symbols per context:
context dilution

Mozilla109

Context Dilution Overhead
● Larger contexts amortize learning overhead

– Need 1000 symbols per DOF to get under 1%

● Gain from better modeling must offset overhead

Number of Symbols per DOFLe
ar

ni
ng

 O
ve

rh
ea

d
(b

its
/s

ym
)

Mozilla110

Reducing Contexts
● Merge contexts: c = skip

above
 + skip

left

– 4 contexts reduced to 3

● Replace binary tree with DAG:

– 7 contexts reduced to 3

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1

0 1

Mozilla111

Parallelism
● Arithmetic coding is inherently serial

– State depends on a complicated sequence of
rounding and truncation operations

– Now the bottleneck in many hardware decoders

● Lots of ways to address this
– All of them have drawbacks

Mozilla112

Parallelism: Partitions
● Code different parts of the frame independently

– Allowed by both H.264 and VP8

● Each uses an independent arithmetic coder
● Can all be decoded in parallel
● BUT

– Must encode files specially (not on all the time)

– Can’t predict across partition boundaries

– Have to re-learn statistics in each partition

– Non-trivial bitrate impact

Mozilla113

Parallelism: HEVC Approach
● Quantize the probabilities (just like with an FSM)
● Map each probability to a separate stream

– Encodes symbols with just that one probability

– Allows efficient Huffman code (cheap!)

– Allows FSM decoding (no codebook switching)

● Decode all streams in parallel and buffer output
– Complicated scheduling problem: not evenly split

● Software implementation half CABAC’s speed
– (Loren Merritt, Personal Communication, 2010)

Mozilla114

Parallelism: Paired Coders
● Idea due to David Schleef
● Code pairs of symbols at a time with

independent coders
● Carefully schedule when bits are written to/read

from the bitstream
– So they get sent to the right coder

● Drawbacks:
– If you only want to code one symbol, must clock a

“null” (prob=1.0) symbol through other coder

– Small speed-up

Mozilla115

Parallelism: Non-Binary Coder
● Coding a symbol from an alphabet of size 16 is

equivalent to coding 4 bits at once
– This is just the libtheora Huffman decoding

approach applied to the VP8 tree coder idea

– Most coding operations are per-symbol
● Context selection, state update, renormalization check,

probability estimator

– Exception: codebook search
● Parallel search needs N multipliers for log(N) speed-up
● Can keep it serial for speed/gate-count trade-off

– Can’t use FSM to estimate probabilities

Mozilla116

Non-Binary Coder (cotd.)
● Tested with VP8 tree coder

– Used mode and motion vector data (not DCT)

– Binary decoder vs. multi-symbol decoder (pure C
implementation):

● Includes all overheads for non-binary arithmetic
coding

● Serial codebook search (no SIMD)
● Doesn’t include overheads for probability estimation

(VP8 uses static probabilities)

– Speed-up almost directly proportional to reduction
in symbols coded (over a factor of 2 for VP8)

Mozilla117

Non-Binary Coder (cotd.)
● Estimating probabilities is harder

– Can use frequency counts, but no easy way to
ensure total is a power of two

● Could use approximate coder (e.g., Stuiver’s)
● Could transmit explicit probabilities (à la VP8)

● Partitioning into contexts is harder
– 2 neighbors with a binary value is 22 = 4 contexts

– With 16 possible values that’s 162 = 256 contexts
● And each one has 15 parameters to estimate

– Need other ways to condition contexts

Mozilla118

Reducing Freq. Count DOFs
● Frequency counts in large contexts

– Only boost prob. of one value per symbol

– Neighboring values often correlated

● Idea: add something to the count of the coded
symbol’s neighbors, too

– SIMD makes it as cheap as normal frequency
count updates

– Can simulate any binary model (1st order approx.)

– A binary model with reduced DOFs yield reduced
DOF frequency count models

Mozilla119

Reducing Freq. Count DOFs
● Example: Update after coding a 0 from

an 8-value context given model at right

 {1,1,1,1,0,0,0,0}

+ {1,1,0,0,1,1,0,0}

+ {1,0,1,0,1,0,1,0}

 {3,2,2,1,2,1,1,0}
● All frequency counts are linear combinations

of these 3 vectors or their inverses
– 3 DOF instead of 7

0 1

0 1

0 1

Mozilla120

Beyond Binary Models
● No need to ape a binary context model

– How do we train a model from data?
● Standard dimensionality reduction techniques (PCA,

ICA, NMF, etc.)

● No need to use frequency counts
– Some contexts well-approximated by parametric

distributions (Laplace, etc.) with 1 or 2 DOF

– Must re-compute distribution after each update
● Can be combined with codebook search, early

termination, etc.

Mozilla121

Other Improvements
● Per-context learning rate

– Optimal rate varies drastically

– Easy to measure from real data (saves 3% bitrate)

– FSM prob. estimator: expensive (lots of tables)

– Freq. counts: cheap (1 shift/symbol)

● Rate-dependent context merging
– Lower rates code fewer symbols

– Should use fewer contexts (context dilution)

– No existing codecs do this

Mozilla122

Practical Examples: Run-Level
Coding

● JPEG and MPEG standards prior to H.264 use
(run,level) coding

● Coefficients scanned in zig-zag order
– “run”: Number of zero

coefficients before the next
non-zero coefficient

– “level”: The value of the
non-zero coefficient

Mozilla123

Practical Examples: Run-Level
Coding (cotd.)

● Huffman code built for most common (run,level)
pairs

● Additional “End Of Block” symbol indicates no
more non-zero coefficients

● Escape code signals uncommon (run,level) pair
● Fast: Lots of coefficients can be decoded from

one symbol
● Huffman code is static, so some codewords can

produce more coefficients than remain in the
block (wasted code space)

Mozilla124

Concrete Example: H.264 DCT
Coefficients

● Codes locations of non-zero coefficients first,
then their values second

● First pass (forwards):
– coded_block_flag: 0 → skip whole block

● significant_coeff_flag[i]: one per coeff (except last)
– last_significant_coeff_flag[i]: one per significant coeff.

(except last coeff.): 1 → skip the rest of the block

● Second pass (backwards):
– coeff_abs_level_minus1[i]: one per sig. coeff.

– coeff_sign_flag[i]: one per significant coeff.

Mozilla125

H.264 DCT Coefficients (cotd.)
● 6 “categories”, each with separate contexts

● Context model
– coded_block_flag

● Separate contexts for each combination of
coded_block_flag values from two neighboring blocks

Type # Type

0 Luma DC coefficients from Intra 16×16 MB 3 Chroma DC coefficients

1 Luma AC coefficients from Intra 16×16 MB 4 Chroma AC coefficients

2 Luma coefficients from any other 4×4 block 5 Luma coefficients from an 8×8 block

Mozilla126

H.264 DCT Coefficients (cotd.)
● Context model (cotd.)

– significant_coeff_flag, last_significant_coeff_flag
just use position in the list for most categories

● Chroma DC and 8×8 luma coeffs. merge some
contexts

● No dependence on values in other blocks at all!

● coeff_abs_level_minus1
– Values less than 14 use unary (0, 10, 110, etc.)

– Values 14 and larger code an Exp-Golomb “suffix”
● Codes (coeff_abs_level_minus1-14) with Exp-Golomb

Mozilla127

H.264 DCT Coefficients (cotd.)
● coeff_abs_level_minus1 context model:

– First bit
● 1 context used if there’s a value greater than 1 in the

block
● 4 more contexts indexed by the number of 1’s seen

so far

– All remaining bits in unary prefix
● 5 contexts (except for chroma DC, which only uses 2)
● Indexed by the number of values greater than 1

– Exp-Golomb suffix: no entropy coding (p=0.5)

● coeff_sign_flag: No entropy coding (p=0.5)

Mozilla128

Alternate Design: SPIHT-based
● Lots of research on entropy coding in the 90’s

for wavelet codecs
● Major examples

– EZW: Embedded Zerotrees of Wavelets (Shapiro
‘93)

– SPIHT: Set Partitioning In Hierarchical Trees (Said
and Pearlman ‘96)

– EBCOT: Embedded Block Coding with Optimal
Truncation (Taubman ‘98)

● Most also applicable to DCT coefficients

Mozilla129

V D

H

Set Partitioning in Hierarchical
Trees

● Arrange coefficients in hierarchical trees
– Basis functions with similar orientation grouped

into the same tree

“Horizontal”, “Vertical”,
and “Diagonal” groups
with example parent/child
relationships

Other groupings possible,
can even switch between
them for each block

Mozilla130

SPIHT Coding
● “Bit-plane”/“Embedded” coding method

– Coefficients converted to binary sign-magnitude

– A coefficient is “significant” at level n if its
magnitude is at least 2n.

– Scan each bitplane
● Identify coefficients that become significant at this

level
– Code the sign when the coefficient becomes significant

● Code another bit of already-significant coefficients

● Called “embedded” because you can stop
coding at any point to achieve a desired rate

Mozilla131

Identifying Significant
Coefficients

● “Partition” into three sets using hierarchical
trees:

– List of Significant Pixels (LSP)

– List of Insignificant Pixels (LIP)

– List of Insignificant Sets (LIS)
● Two types of entries

– Type A, denoted D(i,j), all descendants of node (i,j)
– Type B, denoted L(i,j), all descendants excluding

immediate children

Mozilla132

Identifying Significant
Coefficients: Algorithm

● Set LSP={}, LIP={(0,0)}, LIS={D(0,0)} in top plane
● For (i,j) in LIP, output one bit to indicate significance

– If significant, output sign bit, move (i,j) to LSP
● For each entry in LIS, remove it, and then:

– Type A: output one bit to indicate if any D(i,j) significant
● If so, output four bits to indicate significance of each

child, move them to LSP, and code a sign
● Then add L(i,j) to LIS

– Type B: output one bit to indicate if any L(i,j) significant
● If so, add all four children to LIS as Type A entries

Mozilla133

SPIHT/DCT Results
Z. Xiong, O.G. Guleryuz, M.T.
Orchard: “A DCT-Based
Embedded Image Coder.”
IEEE Signal Processing
Letters 3(11):289–290, Nov.
1996.

SPIHT

DCT+EZW

Mozilla134

SPHIT (cotd.)
● Gives good performance even without an

entropy coder
– Arithmetic coding adds another 0.25-0.3 dB

● But very slow
– Repeated scanning, list manipulation, branches,

etc.

● However...

Mozilla135

Non-Embedded SPIHT
● Can make a non-embedded version of SPIHT

just by re-arranging the bits
– Noticed independently by Guo et al. 2006, Charles

Bloom 2011:
http://cbloomrants.blogspot.com/2011/02/02-11-11-some-notes-on-ez-trees.html

● Ironically Said and Pearlman made a non-embedded
coder strictly inferior to SPIHT (Cho et al. 2005)

● Details for “Backwards” version in Guo et al.
2006

– Don’t need “Backwards” part (can buffer one block)

– Single-pass, no lists

http://cbloomrants.blogspot.com/2011/02/02-11-11-some-notes-on-ez-trees.html

Mozilla136

Non-Embedded SPIHT:
Reducing Symbols/Block

● Code difference in level where D(i,j) and L(i,j) or
children become significant

– Unary code: equivalent to SPIHT

– But we can use multi-symbol arithmetic coder

● When D(i,j) and L(i,j) are significant at different
levels, must have at least one significant child

– Code top bitplane for all four children at once

● After a coefficient becomes significant, can
output rest of bits immediately

Mozilla137

Additional References
● R.E. Krichevsky and V.K. Trofimov: “The Performance of Universal Encoding.” IEEE

Transactions on Information Theory, IT-27(2):199–207, Mar. 1981.

● J.M. Shapiro: “Embedded Image Coding Using Zerotrees of Wavelet Coefficients.”
IEEE Transactions on Signal Processing, 41(12):3445–3462, Dec. 1993.

● A. Said and W. A. Pearlman: “A New, Fast, and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees.” IEEE Transactions on Circuits and Systems for
Video Technology, 6(3):243–250, Jun. 1996.

● D. Taubman: “High Performance Scalable Image Compression with EBCOT.” IEEE
Transactions on Image Processing, 9(7):1158–1170, Jul. 2000.

● Y. Cho, W.A. Pearlman, and A. Said: “Low Complexity Resolution Progressive Image
Coding Algorithm: PROGRES (Progressive Resolution Decompression).” In Proc.
12th International Conference on Image Processing (ICIP’05), vol. 3, pp. 49–52, Sep.
2005.

● J. Guo, S. Mitra, B. Nutter, and T. Karp: “A Fast and Low Complexity Image Codec
Based on Backwards Coding of Wavelet Trees.” In Proc. 16th Data Compression
Conference (DCC’06), pp. 292–301, Mar. 2006

Mozilla138

Questions?

Mozilla

Introduction to Video Coding
Part 4: Motion Compensation

Mozilla140

Main Idea

● “Block Matching Algorithms” (BMA)
– Code an offset for each block (the “motion vector”)

– Copy pixel data from previous frame relative to
that offset

● If the match is good, result is mostly zero

⊖ =

Input Reference frame Residual

Mozilla141

Motion Search: Exhaustive
● Check all offsets within some range (±16 pixels)
● Pick one with smallest Sum of Absolute

Differences (SAD)

– Error function not smooth in general
● Global optimum could be anywhere

– Successive Elimination: algorithm that lets you
skip many candidates due to overlap

● M. Yang, H. Cui, and K. Tang: “Efficient Tree Structured Motion
Estimation Using Successive Elimination.” IEE Proceedings –
Vision, Image, and Signal Processing, 151(5):369–377, Oct.
2004.

∑
x=0

N−1

∑
y=0

M−1

∣I k  x , y− I k−1xMVx , yMV y∣

Mozilla142

Aperture Problem
● In flat regions, most MVs give approximately

the same error
– Random noise decides which one you choose

● Along an edge, still ambiguous in 1-D subset

● Solution: account for coding cost of MV: D+λR

Image from Chen
and Willson, 2000.

Mozilla143

Motion Search: Pattern-Based
● Start from (0,0)

– Search, e.g., 4 neighbors (diamond search)
● Move to the best result
● Stop when there’s no improvement

– Fast: usually only have to check a few candidates

– Lots of research into best patterns
● “Hex” search (6-points): slower, but better quality

● “Zonal Search” (Tourapis et al. 2001, 2002)
– Predict several MVs from neighbors, stop if under

threshold, pattern search from best otherwise

Mozilla144

Why SAD?
● It’s fast

– No multiplies like Sum of Squared Differences (SSD)

– SAD of 2×8 pixels in one x86 instruction

● It fits the statistics of the residual better than SSD

N. Sebe, M.S. Lew, and D.P. Huijsmans: “Toward Improved Ranking Metrics.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(10):1132–1143, Oct. 2000.

Gaussian error (SSD metric)
Laplacian error (SAD metric)

Cauchy error (log(1+(x/a)2) metric)

Mozilla145

Subpel Refinement
● Motion often isn’t aligned with the pixel grid
● After initial search, “refine” motion vector to

subpel precision
– Error well-behaved between

pixel locations

– No need for exhaustive search at
subpel resolution

● ½ pel alone would require 4× as
many search points

whole pel

half pel

quarter pel

Mozilla146

Subpel Interpolation
● Need to interpolate between pixels in the

reference frame for subpel
– Why is this hard?

– Aliasing:

Image from http://en.wikipedia.org/wiki/Aliasing

http://en.wikipedia.org/wiki/Aliasing

Mozilla147

Subpel Interpolation (cotd.)
● Real signals are not bandlimited

– Hard edges have energy at all frequencies

● But even if they were, practical interpolation
filters can’t preserve spectrum perfectly

– MPEG1...4 use bilinear

– Theora uses linear

– H.264, VP8 use 6-tap

– HEVC proposes 12-
tap, non-separable
filters

Mozilla148

Adaptive Interpolation Filters
(HEVC proposals)

● Compute “optimal” filters for each frame
– Transmit one filter per subpel location

● Requires multiple passes in encoder (slow)
● Lots of coefficients, significant amount of bitrate

– Need R-D optimization to decide which to update
● Some subpel locations only used a few times

– So many free parameters you’re basically fitting noise

– Alternative: backwards-adaptive
● Computationally expensive in the decoder
● No original to compare to, won’t be as good

● No reason to expect same filter to be good over
a whole frame

Mozilla149

Subpel Interpolation (cotd.)
● Aliasing error maximal at halfpel locations

● Worth spending time to do high-quality
upsample by a factor of 2

– Further subpel refinement can use cheaper
interpolation

● But reference image already corrupted by
aliasing...

From T. Wedi and H.G. Musmann: “Motion-
and Aliasing-Compensated Prediction for
Hybrid Video Coding.” IEEE Transactions
on Circuits and Systems for Video
Technology, 13(7):577–586, Jul. 2003.

Mozilla150

Subpel: Edge-Directed
Interpolation

● Lots of recent research into nonlinear filters
– Can do better than linear ones, but expensive

– Based on assumptions about natural images

● All we need is something fast enough for video

From A. Giachetti and N.
Asuni: “Real-Time Artifact-
Free Image Upscaling.” IEEE
Transactions on Image
Processing, 20(10):2760–
2768, Oct. 2011.

Mozilla151

Coding MVs
● Compute a predictor from neighboring blocks

– Usually uses a median to avoid outliers

● Subtract predictor, code offset
● Creates a non-trivial dependency between MVs

– Usually ignored

Median of 3
(MPEG codecs)

Median of 4 (VC1)Median of 3 (Dirac)

Mozilla152

Variable Block Size
● Can give large gains (0.9 to 1.7 dB) at low rates
● Most codecs support at least two sizes:

– 16×16 (the default)

– 8×8 (called “4MV”)

● H.264/VP8 add 8×16, 16×8, 4×4 partition sizes
– 4×4 isn’t that useful according to Jason Garrett-

Glaser

● HEVC expands this to 32×32 or even larger
– Not necessary with good MV prediction, and good

searches in the encoder, but makes things easier

Mozilla153

Non-Rectangular Partitions
● Several HEVC proposals for 4×16, 16×4, L-

shaped, split on arbitary line, etc.
● One good collection of partition shapes:

From M. Paul and M. Murshed:
“Video Coding Focusing on Block
Partitioning and Occlusion.” IEEE
Transactions on Image Processing,
19(3):691–701, Mar. 2010.

Mozilla154

Non-Rectangular Partitions
● Most performance gain at low bitrates

– Odd partition shapes allow you to
● Spend fewer bits coding split
● Code fewer MVs on a split

– Not sure how important this is given dynamic programming
in the encoder

Mozilla155

Reference Frame Structure
● Types of frames:

– I-Frames (Intra Frames, Key Frames)
● No motion compensation

– P-Frames (“Predicted”, Inter Frames)
● MPEG1...4: Single reference frame (last I or P frame)
● H.264: Choose from multiple reference frames, all

from the past

– B-Frames (“Bi-Predicted”)
● Up to two reference frames per block (averaged)
● MPEG1...4: Closest I- or P-frame from past and future
● H.264: Basically arbitrary choice (“Generalized B-

frames”)

Mozilla156

B-Frames: Direct Mode
● Bi-prediction without signaling
Past frame

Time

Future frameB-frame

tb

td

mvCol

Co-located
Partition

Direct Mode
B-Partition

mvL0 = mvCol*(tb/td)

mvL1 = mvL0 - mvCol

Mozilla157

“Multihypothesis” Motion
Compensation

● Diminishing returns for more references
● Optimal MV precision depends on noise level
● Half-pel is a form of multihypothesis prediction!

From B. Girod: “Efficiency
Analysis of
Multihypothesis Motion-
Compensated Prediction
for Video Coding.” IEEE
Transactions on Image
Processing, 9(2):173–
183, Feb. 2000.

Mozilla158

Weighted Prediction
● Fades between scenes are common, but very

expensive to code
● Prior to H.264, B-frames could only average

two frames
● H.264 added weighted prediction

– Each reference gets one weight for entire frame
● Can range from -128.0 to 127.0!

– No way to disable on block-by-block basis
● Can’t handle shadows in illumination changes that

only affect part of a frame

Mozilla159

Template Matching Weighted
Prediction

● HEVC proposal
– Look at area around the block

you’re copying from in the
reference frame

– Compare it to area you’ve already
coded in the current frame

– Compute the optimal prediction
weight for the overlap

● Weight varies block by block, no
extra signaling required

Reference Frame

Current Frame

Mozilla160

Blocking Artifacts
● Lapped transforms eliminate blocking artifacts

from the residual
● But block-based motion compensation adds

more discontinuities on block boundaries
– Hard to code with a lapped transform

● Two approaches to avoid them
– Overlapped Block Motion Compensation (OBMC)

– Control Grid Interpolation (CGI)

Mozilla161

Overlapped Block Motion
Compensation (OBMC)

● Overlap the predictions from multiple nearby
MVs, and blend them with a window

– Also a form of
multihypothesis
prediction

From H. Watanabe and
S. Singhal: “Windowed
Motion Compensation.” In
Proc. SPIE Visual
Communications and
Image Processing ‘91,
vol. 1605, pp. 582–589,
Nov. 1991.

Mozilla162

OBMC (cotd.)
● Used by Dirac

– Also want to avoid blocking artifacts with wavelets

● PSNR improvements as much as 1 dB
● Issues

– Motion vectors no longer independent
● Can use iterative refinement, dynamic programming

(Chen and Willson, 2000), bigger cost of ignoring this

– Low-pass behavior
● Blurs sharp features

– Handling multiple block sizes (2-D window
switching)

Mozilla163

Multiresolution Blending
● Technique due to Burt and Adelson 1983

– Decompose predictor into low-pass and high-pass
subbands LL, HL, LH, HH

● Just like a wavelet transform

– Blend with small window in high-pass bands

– Recursively decompose LL band

● Prorposed simplification
– One level of Haar decomposition

– Blend LL band like OBMC, copy rest like BMA

– Reduces OBMC multiplies by 75%

Mozilla164

Control Grid Interpolation (CGI)
● Instead of blending predictors like OBMC, blend

MVs (like texture mapping)
– More expensive: Can’t use large loads

– Need subpel interpolation at much finer resolution

– Can’t model motion discontinuities, multiple
reference frames

● Harder to estimate MVs
– Can’t ignore dependencies anymore

– Little PSNR improvement over BMA without
iterative refinement, dynamic programming

Mozilla165

Switching Between OBMC and
CGI

● Various published research suggests using
both techniques is better than either one alone

– Switch on block-by-block basis

– In the range of 0.5 dB better

● None of them avoid blocking artifacts at switch
● Alternate approach

– Choose which method to use on the edges of
blocks

– Pick interpolation formulas that can achieve
desired behavior on an edge

Mozilla166

Adaptive Switching
● VVVV

● BVVV

● BVBV

● VVBB

● VBBB : bilinear vector weights

 : bilinear image weights

● BBBB

I w0m0w1m1w2m2w3m3

I w0w1m0w2m2w3m3⋅s0
I w0w1m1w2m2w3m3⋅s1
I w0m0w1m1w2m2w3m3⋅s2s3

I w0w1m0w2w3m3⋅s0s3
I w0w1m1w2w3m2⋅s1s2

I 1−w1m0w1m1⋅s0I w1m11−w1m2⋅s2
I w0m0w1m1w2m2w3m3⋅s1I m3⋅s3

I 1−w1m0w1m1⋅s0I m2⋅s2
I w0m01−w0m1⋅s1I m3⋅s3

I m0⋅s0I m1⋅s1I m2⋅s2I m3⋅s3

wi

s j

Mozilla167

Variable Block Size
● Need a way change block size that doesn’t

create blocking artifacts
● Dirac subdivides all blocks to the smallest level

and copies MVs
– Lots of setup overhead for smaller blocks

– Redundant computations for adjacent blocks with
same MV

– Only works for OBMC, not CGI

Mozilla168

Adaptive Subdivision
● Slight modifications to the previous formulas

allow artifact-free subdivision in a 4-8 mesh
– Neighbors differ by at most 1 level of subdivision

– Fine-grained control (MV rate doubles each level)

– Efficient R-D optimization methods (Balmelli 2001)
● Developed for compressing triangle mesh/terrain data

– Larger interpolation kernels, less setup overhead,
fewer redundant calculations

Mozilla169

Demo

Mozilla170

References
● F. Dufaux and F. Moscheni: “Motion Estimation Techniques for Digital TV: A Review and a New

Contribution.” Proceedings of the IEEE, 83(6):858–876, Jun. 1995.

● A.M. Tourapis: “Enhanced Predictive Zonal Search for Single and Multiple Frame Motion Estimation.” Proc.
SPIE Visual Communications and Image Processing, vol. 4671, pp. 1069–1079, Jan. 2002.

● A.M. Tourapis, O.C. Au, M.L. Liou: “Highly Efficient Predictive Zonal Algorithms for Fast Block-Matching
Motion Estimation.” IEEE Transactions on Circuits and Systems for Video Technology, 12(10):934–947, Oct.
2002.

● M.C. Chen and A.N. Willson, Jr.: “Motion-Vector Optimization of Control Grid Interpolation and Overlapped
Block Motion Compensation Using Iterated Dynamic Programming.” IEEE Transactions on Image
Processing, 9(7):1145–1157, Jul. 2000.

● K.-C. Hui and W.-C. Siu: “Extended Analysis of Motion-Compensation Frame Difference for Block-Based
Motion Prediction Error.” IEEE Transactions on Image Processing, 16(5):1232–1245, May 2007.

● W. Zheng, Y. Shishikui, M. Naemura, Y. Kanatsugu, and S. Itoh: “Analysis of Space-Dependent
Characteristics of Motion-Compensated Frame Differences Based on a Statistical Motion Distribution Model.”
IEEE Transactions on Image Processing, 11(4):377–389, Apr. 2002.

● P.J. Burt and E.H. Adelson: “A Multiresolution Spline with Application to Image Mosaics.” ACM Transactions
on Graphics, 2(4):217–236, Oct. 1983.

● L. Balmelli: “Rate-Distortion Optimal Mesh Simplification for Communications.” Ph.D. Thesis, École
Polytechnique Fédérale de Lausanne, 2000.

Mozilla171

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171

