An Iterative Linearised Solution to the
Sinusoidal Parameter Estimation Problem

Jean-Marc Valin®%*  Daniel V. Smith P,
Christopher Montgomery ¢, Timothy B. Terriberry ¢

aCSIRO ICT Centre, Australia
PCSIRO Tasmanian ICT Centre, Australia
“RedHat Inc., USA
d Xiph. Org Foundation

Abstract

Signal processing applications use sinusoidal modelling for speech synthesis, speech
coding, and audio coding. Estimation of the model parameters involves non-linear
optimisation methods, which can be very costly for real-time applications. We pro-
pose a low-complexity iterative method that starts from initial frequency estimates
and converges rapidly. We show that for N sinusoids in a frame of length L, the
proposed method has a complexity of O(LN), which is significantly less than the
matching pursuits method. Furthermore, the proposed method is shown to be more
accurate than the matching pursuits and time-frequency reassignment methods in
our experiments.
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1 Introduction

Signal processing applications such as speech synthesis [1], speech coding [2],
and audio coding [3] increasingly use sinusoidal models. Estimating the model
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parameters often represents a significant fraction of their overall computational
complexity. Real-time applications require a very low-complexity estimation
algorithm.

This paper proposes a new parameter estimation procedure based on the lin-
earisation of the model around an initial frequency estimate and iterative
optimisation with fast convergence. For typical configurations, it is over 20
times less complex than matching pursuits [4].

We start by introducing sinusoidal modelling and prior art in Section 2. Sec-
tion 3 discusses frequency estimation and our proposed linearisation. In Sec-
tion 4, we present a low-complexity iterative solver for estimating sinusoidal
parameters. Results are discussed in Section 5, and Section 6 concludes this
paper. Unless otherwise noted, a bold uppercase symbol (A) denotes a matrix,
a bold lower case symbol (a;) denotes a column of the matrix, and an italic
symbol (a; ;) denotes an element of the matrix.

2 Sinusoidal Parameter Estimation

A general sinusoidal model that considers both amplitude and frequency mod-
ulation can be used to approximate a signal 7 (t) as:

F (1) :éAk (#) cos (/Otwk (u)du+¢k) , (1)

where Ay, () is the time-varying amplitude, wy, () is the time-varying frequency
and ¢y is the initial phase. The model in (1) has limited practical use because
there are an arbitrary number of ways to approximate Ay (t) and wy, (¢). Using
discrete time n and normalised frequencies 6, over a finite window & (n) yields
a simpler model:

N
F(n) =h(n) > (A + Aen) cos (Gen + o) (2)
k=1
where A is the first time derivative of the amplitude, or even

z(n) =h(n)d_ Aycos (Gpn + ¢r) | (3)

k=1

if we do not want to model amplitude variation within a frame. Although
simpler, the models in (2) and (3) are still difficult to estimate because they
involve a non-linear optimisation problem.



There are several methods for estimating these sinusoidal model parameters.
The simplest is a standard discrete Fourier transform (DFT) over a rectangular
window. This is limited by frequency leakage caused by sidelobes from the rect-
angular window and by its poor frequency resolution®, which is 27 /L rad/s
for a frame of length L.

By defining an over-complete dictionary of sinusoidal bases, matching pur-
suits methods [4] make it possible to increase the frequency resolution arbi-
trarily. Their basis functions also allow a non-rectangular window to reduce
sidelobes. However, as a greedy algorithm, matching pursuits behaves sub-
optimally when the basis functions are not orthogonal [5], which is usually the
case for sinusoids of arbitrary frequency over a finite window length. The or-
thogonality problem of matching pursuits can mainly be overcome by further
non-linear optimisation as in [5]. However, this increases complexity signifi-
cantly, to as high as O (N*).

The time-frequency reassignment (TFR) method is another approach that
improves the frequency estimate resolution. When using a spectrogram repre-
sentation, phase information from the short-time Fourier transform (STFT) is
exploited to reassign energy from the centre of a spectral bin (¢, w) to its centre
of gravity, (t*,w*) |6,7]. The drawback is that this approach is not well suited
to noisy signal conditions, as energy becomes reassigned to noise dominated
regions [7].

Other work, such as [1,8], focuses on the estimation of sinusoidal partials in
harmonic signals. While these are generally low complexity methods, they are
not applicable to non-harmonic signals.

3 Linearised Model

We propose another way to obtain accurate frequency estimates, by rewriting
the sinusoidal model in (2) as

Z(n)=h(n)y_ (Ak + nAk) -cos ((0x + Abg) n + @) (4)

where 6, is an initial estimate of the frequencies and A#, is an unknown
correction to the initial estimate. When both the amplitude modulation pa-
rameter A; and the frequency correction A#j, are small, we show in Appendix

I Throughout this paper, “resolution” means the smallest frequency difference that
can be measured for a sinusoid, not the capability to distinguish between two close
sinusoids.



A that (4) can be linearised as the sum of four basis functions:

N
Z(n) =~ h(n) Z ¢ cos Opn + s sin Bpn + dpn cos Opn + typnsinyn | (5)
k=1
with
Ci = Ak COS Cbk 5 (6)
s = —Apsingy , (7)
dk = Ak COS ¢k - AkAHk sin ¢k y (8)
tk = —Ak sin ¢k - AkAek COS ¢k . (9)
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Figure 1. Difference between two sinusoids of nearly identical frequencies, resulting
in an amplitude-modulated sinusoid.

Fig. 1 is a visual demonstration of the linearisation for a small frequency
correction. It shows that if the frequency estimate is very close to the actual
frequency of the sinusoid, the error between the estimated sinusoid and the
actual sinusoid can be approximated as an amplitude modulated sinusoid.
Hence, that error can be modelled using the two basis functions (8) and (9).

We can express (5) in matrix form as

X~ AW | (10)
A= [AC,AS,Ad,At} , (11)
w=[c,s,d,t]" | (12)



where the basis components A¢, A°, A? and A? are defined as

ap . = h(n)cospn , (13)
a, 1, = h(n)sindyn (14)
al = h(n)ncosbn (15)
ay,, = h(n)nsinfpn . (16)

The best fit is obtained through the least-squares optimisation
min [Aw - x,* (17)
where x;, is the windowed input signal. This leads to the well known solution

w=(ATA) AT, . (18)

Once the linear parameters in (5) are found, the original sinusoidal parameters
can be retrieved by solving the system (6)-(9):

Ak =V C% + S% ) (19)

¢ = arg (Ck - ]Sk) ) (20)
i dkck + Sktk
Ay = YT (21)
diSi — tiC
Af, = %2’”9 (22)
Kk

3.1  Frequency Modulation and Higher Order Terms

Generalising the approach to include second order basis functions yields

afl,k = h(n)n®cosfpn , (23)
av = h(n)n®sinfn . (24)

This allows the estimation of both the second derivative of the amplitude, A,
and the derivative of the frequency, @, resulting in the following model:

Z(n)="h(n) i\f: (Ak + nAx + nQAk) - COS ((Hk + Aby, + Hkn) n+ gbk) , (25)

k=1



Appendix B derives the second order linearised model:

N
T (n) &~ h(n))_ c,cosBpn + sisinbn
k=1
+ dpn cos Opn + tpnsin Oyn

+ fin?cosOpn + upn®sinOyn , (26)
with

cp = Apcos ¢y ,

s, = —Apsingy |

di, = Ag cos ¢, — ApAbysin ¢y, |
t, = — A, sin or — ApAby, cos ¢y,
fr = Ay cos ¢y, — Ay sin gy,

w = —Ak sin ¢y, — Akék coS ¢y, .

The second order model (26) can be formulated in matrix form:

X~ Aw (33)
A= [AC,AS,Ad,At,Af,A“} : (34)
w=[c,s,d,t,f,u]” | (35)

where the basis components A¢, A°, A? A A and A" are defined as

ay, , =h (n) cos bpn (36)
k =h (n)sinOgn , (37)
=h (n)ncosbyn , (38)

a, k =h (n)nsinOyn , (39)
k =h (n)n*cosOyn , (40)

v e =h(n)n®sinbn . (41)

As with the first order model, a least-squares optimisation can be used to
obtain the linear terms (27)-(32). The explicit sinusoidal parameters can then
be computed with



Ak =V C% + S% ) (42)

¢ = arg (Ck - ]Sk) ) (43)

A, = Dont el (44)
Ay

dis, — tr.c

A, = %2’”“ ’ (45)
k

A, = et sk (46)
Ay,

o[RSk — ugcy
0, = —_~— 4

The first and second order models are identical, apart from the addition of
the A and terms, which model quadratic amplitude modulation and linear
frequency modulation, respectively. The analysis in Appendix B makes clear
what the third order model and above would look like. However, the accuracy
of each additional set of terms decreases with the order, limiting the usefulness
of higher order models.

4 Iterative Solver

Though solving the linear system (18) demands far less computation than a
classic non-linear solver, it still requires a great amount. D’haes proposed a
method that reduces that complexity from O (LN?) to O (N log N), but only
for harmonic signals [8]. In this paper, we propose an O (LN) solution without
the restriction to harmonic signals.

Our method uses an iterative solution based on the assumption that matrix
A is close to orthogonal, so that

(ATA)_lzdiag{Tl L }:<I>. (48)

ala;” " alay
This way, an initial estimate can be computed as
w® = 1A, (49)
and then refined as
wit) — w@ £ 1AT (Xh _ i(i))
=wl + ® AT (xh — Aw(i)) : (50)



The iterative method described in (49)-(50) is strictly equivalent to the Jacobi
iterative method. The complexity of the algorithm is reduced to O(LMN),
where M is the number of iterations required for acceptable convergence.
Unfortunately, while in practise the Jacobi method is stable for most matrices
A convergence is not guaranteed and depends on the actual frequencies 6.

4.1  Gauss-Seidel Method

An alternative to the Jacobi method is the Gauss-Seidel method. Its main ad-
vantage is that convergence is guaranteed, since the matrix AT A is symmetric
and positive definite [9]. Since the columns of A are usually nearly orthogonal,
AT A is strongly diagonally dominant, and the Gauss-Seidel method converges
quickly. The linear system can be expressed as

Rw=b, (51)

where
R=ATA, (52)
b=A"x, . (53)

Assuming A has been pre-normalised (ala;, = 1,Vk), the Gauss-Seidel algo-
rithm becomes

(2+1 Z T jw (i+1) Z Tk,jwj('i)
i<k i>k

=a;x, — > a, a]w(ZJrl - agajw](-z)

i<k i>k
_w,(;) +alx), — Z aj ajw Hl Z a;, a]w(Z

i<k ji>k
=uw\” +al'x, — a’ (Av(?k(i“))
—w,(;) + a;‘f (Xh - AV\?k(H_l)) 5 (54)
where
W, i+ = wél”rl)’ o 7wlii:r11)’

i iy 1T
w,g),...,wgv)_l} . (5H)

We can further simplify the computation of (54) by noting that only one
element of w;, Y changes for each step. Thus we have

wi™ = w4 alel™ (56)



Algorithm 1 Iterative linear optimisation
Compute basis functions (13)-(16).
w©
e — Xy
for all iteration i=1...M do
for all sinusoid component k =1...4N do

Aw!) — ale

—0

e—e— akAw,(f)
wlii) — wlii_l) + Aw,(f)
end for
end for
for all sinusoid k =1...N do
Ak — \/C% + S%
G« arg (cr, — J51)

dipcr+skte
Ak — A,

Aek «— dkS]fA—Iitka
end for

i+1) . . . . .
where e,(fr ) is the current error in the approximation, computed recursively

as

e/l(;‘+11)_
; } % % ) k % 0
e,(;H) = (wl(gj_ll) - w](le) ai—1 . (57)
e%) , k=

The resulting computation is summarised in Algorithm 1. If there is only one
iteration, then algorithm 1 is equivalent to a simplified version of the matching
pursuits algorithm, where the atoms (frequency of the sinusoids) have been
pre-selected before the search. From this point of view, the proposed method
relaxes the orthogonality assumption made by the matching pursuits method.

The main difference from the Jacobi method is that the Gauss-Seidel method
includes partial updates of the error term after each extracted sinusoid. Con-
vergence follows intuitively from the fact that each individual step is an exact
projection that is guaranteed to decrease the current error e — or at worst
leave it constant if the solution is optimal. Since the error term is updated after
each component k, placing the highest-energy terms first speeds up the opti-
misation. For this reason, we first update the cos#yn and the sin yn terms,
followed by the ncosfin and the nsinfyn terms. This usually reduces the
number of iterations required, converging in half as many iterations as sparse
conjugate gradient techniques, such as LSQR [10], which cannot take advan-
tage of the diagonal dominance of the system.

We choose n = 0 to lie in the centre of the frame in (13)-(16), between sample
L/2 and sample L/2 + 1 if L is even, giving all the aj and a, vectors even
symmetry and all the aj and a¢ vectors odd symmetry. This leads to the



following orthogonality properties:

<ai> az> =0, (58)
<a§, ai> =0, (59)
<a};, az> =0, (60)
(a},af) =0 (61)

Similar properties hold for the second order basis vectors. Because the even
and odd bases are orthogonal to each other, we optimise them separately as

c, t, f]T _ (AevenTAeven)_l ATy (62)
s, d, u (AoddTAodd) A0ddT 5 : (63)
A = A, AL AS] (64)
A =A% AL AY] (65)

Not only does the orthogonality accelerate convergence, but it allows us to split
the error e into half-length even and odd components, reducing the complexity
of each iteration by half.

4.2 Non-Linear Optimisation

If the initial frequency estimates 69 are close to the real frequencies of the
sinusoids 6y, then the error caused by the linearisation (5) is very small. In
this case, Algorithm 1 should result in values of 69 + Af), that are very close
to the real frequencies. However, if the initial estimates deviate significantly
from the real values, then it may be useful to restart the optimisation with

0, — 0, + aAb;, .

where « is the update rate. Typically o = 1. Repeating the operation several
times, we obtain a non-linear iterative solver for Ay, 6k, Ay, and ¢y, and
optionally for 6, and Ayg.

It is not necessary to wait for Algorithm 1 to converge before updating the
frequencies 6. We can let both the linear part and the non-linear part of the
solution run simultaneously. To do that, we must first subtract the solution of
the previous iteration before restarting the linear optimisation.

The non-linear method we propose is detailed in Algorithm 2 and shares some
similarities with the Gauss-Newton method [11]. However, the reparametrisa-
tion in (6)-(9) allows updates to A, Ag, and ¢, to be incorporated into the
linear model immediately when solving the normal equations. This greatly

10



Algorithm 2 Non-linear iterative optimisation, including the second order
terms. Steps marked with T are only applied for the second order model.

vk, 0 = 6°

Yk, [Ar, &r, Ak, Ar, 0] — 0

w® 0

e «— Xy
for all non-linear iteration :=1...M do
for all sinusoid k£ do
Cp — A cos ¢y,
Sp «— — Ay sin ¢y,
dk — Ak COS Cbk
tk — —Ak sin Qbk
tf, « Ay, cos ¢y, — Ay sin ¢y,
fuy, — — A sin ¢y, + A0y cos o
end for
e «— x — AwU™D (result of the last iteration with updated frequency)
for all sinusoid component £ =1...4N do
Aw!) — ale
e—e— akAw,(f)
wlii) — wlii_l) + Aw,(f)
end for
for all sinusoid k=1... N do
Ak — \/C% + S%
B — arg (e — g9)
Ay — dkck;jktk
Aek — dks};;_{k%
TAk — f’fck;-:kuk
Tgk - kakauka
end for

end for

improves convergence compared to a standard Gauss-Newton iteration in the
original parameters. Just like Algorithm 1, it is possible to reduce the com-
plexity of Algorithm 2 in half by taking advantage of the even-odd symmetry
of the basis functions.

5 Results And Discussion

In this section, we characterise the proposed algorithm and compare it to
other sinusoidal parameter estimation algorithms. We attempt to make the
comparison as fair as possible despite the fact that the methods we are com-

11
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Figure 2. Convergence of the non-linear optimisation procedure for various values of
. For a = 1, convergence is achieved in only 3 iterations. The floor at 2 x 10~8rad/s
is due to the finite machine precision.

paring do not have exactly the same assumptions or output. Both the linear
and the non-linear versions of the proposed algorithm are evaluated. For all
algorithms, we use a sine window:

n—(L+1)/2

h(n) = cosm 7 ;

(66)

so that the result of applying the window to both the input signal x and
the basis functions a; is equivalent to a Hanning analysis window. Unless
otherwise noted, we use a frame length L = 256.

5.1 Convergence

We first consider the case of a single amplitude-modulated sinusoid of nor-
malised angular frequency # = 0.1m. We start with an initial frequency es-
timate of # = 0.0957, which corresponds to an error of slightly more than
one period over the 256-sample frames we use. The non-linear optimisation
Algorithm 2 is applied with different values of «a, using only the first-order
terms. The convergence speed in Figure 2 shows that for a = 1, convergence
becomes much faster than for other values of «, indicating that convergence
is super-linear.

If we let the linear part of the algorithm converge at each iteration, the re-
sult is equivalent to the second order Newton’s method, since as shown in
Appendix A, the terms in our linearisation are equal to a first-order Taylor

12
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Figure 3. Region of convergence as a function of the sinusoid frequency. The algo-
rithm never converges when the initial estimate is off by more than 1.05 DFT bins
(2m/Lrad/s ).

expansion in the original variables. Using the chain rule, one can show that
Algorithm 2 is only super-linear if the Gauss-Seidel iteration is super-linear.
Since Gauss-Seidel is an iterative linear method, this can only happen if the
basis vectors in A are orthogonal. In practise, so long as the separation be-
tween frequencies is larger than the sidelobe of the windowing function, these
basis vectors are approximately orthogonal, although in practise they are never
truly orthogonal. However, with a good choice of windowing function and well-
separated frequencies, convergence is quasi-second order.

If we include second-order terms, then convergence becomes linear, since the
frequency modulation term is not “recentered” like the frequency is. While
such recentring is possible, it unnecessarily increases the complexity of the
algorithm while making it more susceptible to numerical errors.

As stated in Section 3, the proposed algorithm depends on an initial approx-
imation sufficiently close to the true frequency of a sinusoid. Fig. 3 shows
the maximum error in the initial estimate for which the non-linear algorithm
converges to the true frequency. For most frequencies, that maximum error is
equivalent to 1.05 DFT bins. However, for low frequencies, the tolerance to
error is reduced. This is due to the fact that aj, ; becomes highly correlated
with af, ; and a}, ;, becomes highly correlated with aik, making it harder to
estimate the frequency offsets A#}, accurately.

13



5.2 Chirps

Next, we measure the frequency estimation accuracy and the energy of the
residual signal for known signals. We use a synthetic signal that is the sum
of five chirps with white Gaussian noise. The chirps have linear frequency
variations starting at 0.05, 0.1, 0.15, 0.2, and 0.25 rad/s and ending at 2.0,
2.2, 2.4, 2.6, and 2.8 rad/s, respectively. The relative amplitudes of the chirps
are 0 dB, -3 dB, -6 dB, -9 dB, and -12 dB. We consider the following algorithms:

Time-frequency reassignment (TFR),

Matching pursuits (32x over-sampled dictionary) (MP),

Proposed algorithm with linear optimisation (linear),

Proposed algorithm with non-linear optimisation (non-linear), and
Proposed algorithm with non-linear optimisation and second order model
(second order).

The time-frequency reassignment method is implemented as in [6]. The match-
ing pursuits algorithm uses a dictionary of non-modulated sinusoids with a
resolution of 7/8192. We also compare to the theoretical resolution obtained
from the picking the highest peaks in the DFT. These are used as the initial
seeds for our algorithm and TFR. To make sure that algorithms are compared
fairly, all algorithms are constrained to frequencies within one DFT bin of the
initial seed, i.e. there are no outliers. MP does not consider any dictionary
elements outside this range, and any step by the optimisation algorithms is
clamped to lie within it. This occurs only rarely when the SNR is low.

Fig. 4 shows the RMS energy of the residual (X — x;) as a function of the
number of iterations for both the linear optimisation and the non-linear opti-
misation. The linear version converges after only 2 iterations, while the non-
linear version requires 3 iterations. These are the iteration limits we use for
the experiments that follow. In the case of the second order non-linear version,
the convergence continues until limited by numerical precision, so we limit it
to 5 iterations, which already significantly improves on the first order model.

Fig. 5 shows the frequency RMS estimation error as a function of the SNR
for each of the four algorithms. At very low SNR, all algorithms perform sim-
ilarly. However, as the SNR increases above 20 dB, matching pursuits stops
improving. This is likely due to the fact that the frequencies are not orthog-
onal, which makes its greedy approach sub-optimal. Both the proposed linear
and non-linear approaches provide roughly the same accuracy up to 30 dB,
after which the non-linear approach provides superior performance. For this
scenario, the only limitation of the non-linear algorithm at infinite SNR is the
fact that it does not account for frequency modulation within a frame.

14
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Figure 5. Frequency RMS estimation error as a function of the SNR.

Fig. 6 shows the reconstruction error for all algorithms except the time-
frequency reassignment method, which cannot estimate the amplitude and
thus cannot provide a reconstructed signal. The reconstruction error is mea-
sured against the noise-free version of the chirps. The performance mirrors that
of Fig. 5, with the notable exception that the non-linear optimisation’s recon-
struction error plateaus long before the second order method, even though it
is able to accurately estimate the frequency.
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The performance of our algorithm is slightly worse than matching pursuits at
low SNR. This is caused by some slight over-fitting due to the inclusion of an
amplitude modulation term. The difference disappears if this term is forced
to zero.

In the chirp experiments our proposed non-linear algorithms out-perform both
matching pursuits and time-frequency reassignment overall. The linear version
has performance similar to previous methods, but it does not perform as well
as non-linear optimisation. In all cases (Fig. 5 to Fig. 6), all the algorithms
behave similarly. Their error at low SNR is similar, and the slope of the error
curve is the same. The main differentiator between algorithms is how far they
improve with SNR before reaching a plateau.

5.3 Audio

We apply our proposed algorithm to a 90-second collage of diverse music clips
sampled at 48 kHz, including percussive, musical, and amusical content. In
this case, we cannot compare to matching pursuits because the lack of ground
truth prevents us from forcing a common set of initial sinusoid frequencies. We
select the initial frequency estimates required for the proposed algorithm using
peaks in the standard DFT. The number of sinusoids is variable (depends on
the number of peaks) and a 256-sample window is used.

The energy of the residual is plotted as a function of the number of iterations
in Fig. 7. Both algorithms converge quickly and we can see that the linear opti-

16
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Figure 7. Reduction in residual energy as a function of the number of iterations.

misation only requires 2 iterations, while the non-linear optimisation requires
3 iterations.

5.4 Algorithm complexity

In this section, we compare the complexity of the proposed algorithms to that
of other similar algorithms. For the sake of simplicity, we discard some terms
that are deemed negligible, e.g., we discard O (LN ) terms when O (LN?) terms
are present.

In Algorithm 1, we can see that each iteration requires 8 LN multiplications
and 8LN additions. Additionally, computation of the 4N basis functions ay
prior to the optimisation requires LN additions and 3LN multiplications. It is
possible to further reduce the complexity of each iteration by taking advantage
of the fact that all of our basis functions have either even or odd symmetry.
By decomposing the residual into half-length even and odd components, only
one of these components needs to be updated for a given basis function. This
reduces the complexity of each iteration in Algorithm 1 by half without chang-
ing the result. The complexity of each iteration is thus 4LN multiplications
and 4LN additions. For M iterations, this amounts to a total of (8M + 5) LN
operations per frame.

The complexity of the proposed non-linear optimisation algorithm (Algo-
rithm 2) is similar to that of the linear version, with two exceptions. First,
because the frequencies change every iteration, the basis functions need to
be re-computed each time. Second, when starting a new iteration, the resid-

17



Table 1

Complexity comparison of various parameter estimation algorithms. *The typical
complexity of [5] is not given, but we estimate it to be at least 500 Mflops, probably
much higher.

Algorithm Complexity ~ Typical (Mflops)
Matching pursuits (direct) 2L°NP 14,000
Matching pursuits (FFT-based) 5LNPlog, LP 960
Direct non-linear (|5]) O (N*+ LN?) >500*
Proposed (linear) (8M +5) LN 9
Proposed (non-linear) (17M —4) LN 20
Proposed (2"¢ order) (24M —6) LN 49

ual must be updated using the new basis functions. The total complexity is
thus (17M — 4) LN operations per frame. For a single iteration, the linear and
non-linear versions are strictly equivalent.

By comparison, a simple matching pursuits algorithm that does not consider
modulation requires 2L N2 P operations per frame, where P is the oversampling
factor, i.e. the increase over the standard DFT resolution. Using a fast FFT-
based implementation [5] reduces the complexity to 5/2LN P log, LP.

Table 1 summarises the complexity of several algorithms. Because the algo-
rithms have different dependencies on all the parameters, we also consider the
total complexity in Mflops for real-time estimation of sinusoids in a typical
scenario, where we have

frame length: L = 256,

number of sinusoids: N = 20,

oversampling: P = 64 (matching pursuits only),

number of iterations: M = 2 (linear), M = 3 (non-linear), M = 5 (2™
order)

e sampling rate: 16 kHz,

e frame offset: 192 samples (25% overlap).

Table 1 shows that the proposed algorithms, both linear and nonlinear, re-
duce the complexity by more than an order of magnitude when compared to
matching pursuits algorithms. However, while matching pursuits can estimate
the sinusoidal parameters directly from the input signal, the proposed method
requires initial frequency estimates. The cost of producing these estimates is
not included in the table but is generally small (e.g., 0.4 Mflops for performing
an FFT).
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6 Conclusion

We have presented a method for estimating sinusoidal parameters with very
low complexity. It is based on a linearisation of the sinusoidal model fol-
lowed by an iterative optimisation of the parameters. The algorithm con-
verges quickly, requiring only 2 iterations for the linear optimisation and 3
iterations for the non-linear optimisation. We showed that the frequency es-
timation of the non-linear version of our algorithm is more accurate than the
matching pursuits and time-frequency reassignment methods. In addition, we
demonstrated computational complexities considerably lower than matching
pursuits. For applications that require it, we have also proposed a second or-
der algorithm that estimates the frequency modulation within a frame. The
total complexity of our approach is more than an order of magnitude less
complex than other proposed methods for estimating sinusoid parameters.
Consequently, our approach could offer significant benefits to areas such as
audio and speech coding, which require sinusoidal modeling to be performed
in real time.

Like other non-linear optimisation methods, ours requires a good initial esti-
mate of the sinusoids’ frequencies. Therefore, low-complexity sinusoid selection
is an important area of future work.

A Linearisation of the Sinusoidal Model

Consider a sinusoidal model with piecewise linear amplitude modulation and
a frequency offset from an initial estimate:

(n)=>Y (Ak + nAk) -cos ((0x + Abg) n + @) (A.1)

k=1
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where 6}, is known in advance and A#, is considered small. Using trigonometric
identities, we can expand the sum in the cosine term into

N
Z (Ak + nAy) cos ¢y, cos (O + Aby)n

N
Z (Ak + nAy ) sin ¢y, sin (0 + Abx) n (A.2)

)
)
N
= Z (Ak + nAk) cos ¢y cos Abyn cos Opn
1y
)
Ay + nAk) sin ¢y, sin Afyn cos Oyn . (A.3)

(
N
- (Ak + nAy ) sin ¢y, cos Abyn sin Gy
(

In the linearisation process, we further assume that Afyn < 1 and Akn < Ay,
so we can neglect all terms second order and above. This translates into the
following approximations:

sin Adgn ~ Abyn , (A.4)
cos Adpn ~ 1, (A.5)
nAysin Adyn ~ 0 . (A.6)

When substituting the above approximations into (A.3), we obtain

N
~ Z (Ak + nAk) COS Py, cos O.n

B
Il
—

- 71

Ay, cos o Abkn sin On

B
Il
—

hE

(A,.C + nAk) sin ¢y, sin Oxn

B
Il
—

Ay sin ¢ AbBn cos Oin . (A.7)

M= T

e
Il
—
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Reordering the terms in (A.7) leads to the following formulation:

N
T(n) =~ Z & COS ¢y cos O

B
Il
—

Ay sin ¢y, sin Oyn

™=

B
Il
—

(A,.C cos ¢ — ApAby sin gbk) ncos Opn

Mz

e
Il
—

Mz

(Ak sin ¢y, + ApAby cos qbk) nsinOyn | (A.8)

e
I
—_

which is a linear combination of four functions. The result in (A.8) is in fact
equivalent to a first-order Taylor expansion.

B Derivation For the Second Order Model

Keeping second order terms allows us to model both the first derivative of the
frequency and the second derivative of the amplitude with respect to time:

(Ak + Agn + n2Ak) COS ¢, COS (Hk + Ab, + Hkn)

||
™=

B
Il
—

Mz

(Ak + Apn + Apn?) sin ¢y sin (Gk + AO;, + Gkn) (B.1)

B
Il
—

(Ak + Apn + Apn?) cos O, COS (A@kn + an2) cos Opn

Il
M- 70

B
Il
—

(
(

sin ¢y, cos ( Afxn + an2) sin 6in

Mz

e
Il
—_

)
)
(A + Agn + Axn?) cos gy sin (Abn + Oyn?) sin Oyn
(A + Agn + Agn?)
( )

Ap + Apn + Agn®) sin ¢y sin (A@kn + Hknz) cos On . (B.2)

Mz

e
Il
—_

This time, we neglect third order terms in n. Non-linear terms involving the
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parameters (e.g. AyAfy) are discarded as well. This leads to

sin (Aé’kn + anQ) ~ Abgn + 0pn? (B.3)
cos (Aﬁkn + Hknz) ~1, (B.4)
(Akn + Aknz) sin (Aﬁkn + Hknz) ~0, (B.5)

Substituting into (B.2), we obtain

N
T (n) ~ Y Agcos ¢y cosbn

B
Il
—

Mz

Ay sin ¢ sin Oxn

B
Il
—

hWE

+ Ay cos or — Ap Al sin gbk) ncos Opn

e
I
—_

Mz

Ak sin ¢y, + ApAby, cos gbk) nsin in

e
I
—_

_|_
WE

Ak COS O, — Akék sin qbk) n? cos Oyn

e
I
—_

Mz

(
(
(4
S

Ay sin ¢y, + Arby, cos qbk) n?sinn . (B.6)

e
I
—_
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