
GPU Accelerating Speeded-Up Robust Features
Timothy B. Terriberry, Lindley M. French, and John Helmsen

Argon ST, Inc., 12701 Fair Lakes Circle, Fairfax, VA 22033
E-mail: {Tim.Terriberry, Lindley.French, John.Helmsen}@argonst.com

Abstract— Many computer vision tasks require interest point
detection and description, such as real-time visual navigation. We
present a GPU implementation of the recently proposed Speeded-
Up Robust Feature extractor [1], currently the state of the art for
this task. Robust feature descriptors can give vast improvements
in the quality and speed of subsequent steps, but require intensive
computation up front that is well-suited to inexpensive graphics
hardware. We describe the algorithm’s translation to the GPU in
detail, with several novel optimizations, including a new method
of computing multi-dimensional parallel prefix sums. It operates
at over 30 Hz at HD resolutions with thousands of features and
in excess of 70 Hz at SD resolutions.

I. INTRODUCTION

Feature point detection and description is a necessary tool
for many computer vision tasks, such as visual navigation,
automatic target recognition and tracking, structure from mo-
tion, registration, calibration, and more. By picking out only
the most salient points of an image that can be repeatably
localized across different images, it vastly reduces subsequent
data processing. However, feature extraction still remains a
major bottleneck for many implementations. For example,
accurate GPS-denied visual navigation on moving vehicles
requires 30 Hz frame rates on large images [2]. Improving the
speed of feature extraction reduces the size, weight, and power
requirements of these systems, reducing deployment costs, so
we have sought to implement the most appropriate extraction
algorithm on readily available commercial hardware.

Since features can be viewed from different angles, dis-
tances, and illumination, it is important that a feature de-
scriptor be relatively invariant to changes in orientation, scale,
brightness, and contrast, while remaining descriptive enough to
be correctly matched against a pool of thousands of candidates.
We chose the Speeded-Up Robust Features (SURF) descriptor
proposed by [1] and described in Section II. This produces
descriptors half the size of previous algorithms, such as the
Scale-Invariant Feature Transform (SIFT)1 [3], while retain-
ing the same matching performance. Smaller feature vectors
increase the speed of subsequent matching operations, while
themselves being less expensive to compute. However, SURF
cannot yet achieve interactive frame rates on a traditional CPU.

Inexpensive Graphics Processing Units (GPUs) can sig-
nificantly accelerate image processing tasks such as feature
extraction. There are already multiple GPU implementations
of SIFT available [4], [5]. We have implemented SURF on the
GPU, as described in detail in Section III. Our benchmarking

1The University of British Columbia holds a patent on locating image
features and performing object detection using SIFT.

results, detailed in Section IV, show SURF is more than
three to five times faster than SIFT on a GPU and orders
of magnitude faster than on the CPU.

II. THE SURF ALGORITHM

This section reviews the original SURF algorithm. We defer
some of the details to the next section, which discusses our
GPU implementation, but we highlight the main points here.

SURF locates features using an approximation to the deter-
minant of the Hessian, chosen for its stability and repeatability,
as well as its speed. An ideal filter would construct the Hessian
by convolving the second-order derivatives of a Gaussian of a
given scale σ with the input image. This is approximated by
replacing the second order Gaussian filters with a box filter, as
illustrated in Fig. 3. Box filters are chosen because they can
be evaluated extremely efficiently using the so-called integral
image, II , defined in terms of an input image I as

II(x, y) =
x∑

i=0

y∑
j=0

I(i, j) . (1)

Given II , the sum over any arbitrarily-sized, axis-aligned 2D
region can be computed in just four lookups.

To achieve scale invariance, the filters are evaluated at a
number of different scales, s, and the 3× 3× 3 local maxima
in scale and position space form the set of detected features.
Here s = σ, the scale of the Gaussians used to derive the box
filters. A minimum threshold H0 on the response values limits
the total number of features. The location x0 of each feature
is then refined to sub-pixel accuracy via [6]

x̂ = x0 −
(

∂2H

∂x2

)−1
∂H

∂x
, (2)

where x = (x, y, s)T are scale-space coordinates and H =
|det(H)| is the magnitude of the Hessian determinant. The
derivatives of H are computed around x0 via finite differences.

Rotation invariance is achieved by detecting the dominant
orientation of the image around each feature using the high-
pass coefficients of a Haar filter in both the x and y directions
inside a circle of radius 6s. The size of the Haar filter kernel is
scaled to be 4s×4s, and the sampling locations are also scaled
by s, which is easily accomplished using the integral image.
The resulting 2D vectors are weighted by a Gaussian with σ =
2.5s and then sorted by orientation. The vectors are summed
in a sliding window of size π

3 , and the orientation is taken
from the output of the window with the largest magnitude.

Once position, scale, and orientation are determined, a
feature descriptor is computed, which is used to match features

across images. It is built from a set of Haar responses
computed in a 4 × 4 grid of sub-regions of a square of size
20s around each feature point, oriented along the dominant
orientation. Twenty-five 2D Haar responses (dx, dy) are com-
puted using filters of size 2s × 2s on a 5 × 5 grid inside
each sub-region and weighted by a Gaussian with σ = 3.3s
centered at the interest point. Bay et al. [1] specify that the
responses dx and dy are to be oriented relative to the feature’s
dominant orientation, but not how to compute them. Since
the integral image can only sum axis-aligned regions, we
compute axis-aligned responses and rotate the resulting 2D
vector. Each sub-region constructs a four-dimensional vector
v = (

∑
dx,

∑
dy,

∑
|dx|,

∑
|dy|) from these responses. Com-

bining the vectors v from each sub-region yields a single 64-
dimensional descriptor, which is normalized to a unit vector
to provide contrast invariance. As a final discriminator, the
sign of the trace of the Hessian matrix is used to distinguish
light-on-dark features from dark-on-light, so that one can skip
comparing the former against the latter. The total algorithm
runs in approximately 354 ms on a 3 GHz Pentium IV for an
800 × 640 image [1], or at just under 3 Hz. The exact time
varies with the number of features detected.

III. IMPLEMENTATION

This section outlines how the major pieces of the SURF
algorithm are implemented on the GPU. Our implementation
was written in Cg using OpenGL, since it was targeted towards
a mobile platform with a GeForce Go 7 Series card, and
mobile versions of the 8 Series and higher cards were not
yet available. The bottleneck for many of our calculations is
memory bandwidth. The top of the line GeForce Go 7950 GTX
has a memory bandwidth of 44.8 GB/s, more than two to four
times that of a high-end CPU system, but this bandwidth is
shared among 24 fragment shaders. Furthermore, this memory
can only be accessed via texture units, which load an entire
2D block of memory into the texture cache on every cache
miss in order to use the memory bus efficiently. Govindaraju
et al. estimate that these blocks are 8× 8 on a GeForce 7800
GTX [7], or 64 times larger than the request. Careful use of
the texture cache is vital to obtaining good running times.

A. Integral Image Computation

The primary workhorse of the SURF algorithm is the
integral image, which is used to compute box filter and Haar
filter responses at arbitrary scales in constant time per pixel.
Since it must be computed over the entire image, it is one
of the more expensive steps, and has been heavily optimized.
We will use some of the same ideas when computing feature
orientations, so we go over them in some detail.

Even representing these sums on 7 Series cards is a problem,
since unlike the 8 Series, they do not support 32-bit integer
textures. The 23 bits of precision available in a floating point
texture have sufficient accuracy only for images less than
215 pixels in size (about 181 × 181). In addition, OpenGL’s
representation of 8-bit input values as a floating-point number
between 0 and 1 produces highly-correlated rounding errors,

which can accumulate into as much as a 1% to 2% error
over the whole image. Instead, we split the result into a
four-component vector of single-precision floats. The first
component contains an integer multiple of 212, the second
an integer between 0 and 212 − 1, and the third a floating-
point number between 0 and 1. We store the original pixel
values from the input image in the fourth component, since
the GPU promotes three-component textures to four, anyway.
This helps to avoid some extra lookups later.

This format can represent the sum of any number of pixels
up to the maximum texture size supported by a 7 Series GPU,
4096 × 4096. The individual components can be subtracted
from their neighbors without causing destructive cancellation,
and the differences accumulated to produce a total result
without undue precision loss. However, keeping the different
components in the proper range during construction of the
integral image requires several expensive modf operations,
so the number of these extended-precision additions (EPAs)
should be minimized. We also round the third component to
the nearest multiple of 1

255 after each step, which avoids the ac-
cumulation rounding errors. Counterintuitively, this measured
as slightly but consistently faster than omitting the rounding
step, possibly due to better instruction scheduling.

1) 1D Parallelization: The computation of the integral
image itself is a classic parallel prefix sum problem. It can
be implemented as a prefix sum on each row, followed by
a prefix sum on each column of the output [8]. The naive
serial solution minimizes the total number of EPAs and can be
computed in parallel over all the rows (resp. all the columns) at
once by rendering thin vertical (resp. horizontal) quadrilaterals.
This requires a ping-pong process going back and forth
between two textures to avoid read-after-write dependency
problems [9]. Unfortunately, doing so appears to flush the
input image from the texture cache, despite the fact that it
is not one of the textures being rendered to. We verified
this experimentally by reducing the number of rows (resp.
columns) computed in parallel as described in [7] to a level
that should have allowed for optimal cache reuse of the input
image. Instead, the execution time increased linearly with the
number of primitives rendered.

This cache flush gives the naive algorithm particularly poor
cache behavior, since each cache miss causes an entire 2D
block to be read into the texture cache from main memory,
even though only a single 1D row or column of the block
will be used. The output also winds up in alternate columns
(resp. rows) and must be copied to a common texture. This
can be done by outputting all the columns (resp. rows) as they
are computed to a separate, third texture using multiple render
targets (MRT) to avoid additional uncached texture reads. The
total computation requires approximately 4N reads, 2N EPAs,
and 4N writes to compute the whole integral image, ignoring
lower-order (constant) terms, where N is the number of pixels.
However, because of the poor cache locality, the read memory
bandwidth required is actually 8 times larger.

2) 2D Parallelization: An approach that exhibits much
better 2D cache locality can be derived by implementing the

sum within a row (resp. column) in parallel as well, using
Blelloch’s work-efficient algorithm [10]. This algorithm has a
straightforward GPU adaptation, as presented in [11], which
we detail here. The algorithm operates in two phases, an up-
sweep and a down-sweep, to construct two image pyramids,
U

(k)
x and D

(k)
x , (resp. U

(k)
y and D

(k)
y), where k is the pyramid

level. Each level is half the width (resp. height) of the previous
level and is defined by the following set of recurrences:

U (k)
x (x, y) = U (k−1)

x (2x, y) + U (k−1)
x (2x + 1, y) , (3)

D(k)
x (x, y) =

D

(k+1)
x (bx

2 c, y) , x even,
D

(k+1)
x (bx

2 c, y)
+ U

(k)
x (x− 1, y), x odd,

(4)

U (k)
y (x, y) = U (k−1)

y (x, 2y) + U (k−1)
y (x, 2y + 1) , (5)

D(k)
y (x, y) =

D

(k+1)
y (x, by

2 c) , y even,
D

(k+1)
y (x, by

2 c)
+ U

(k)
y (x, y − 1), y odd.

(6)

Both down-sweeps are initialized with D
(Kx)
x = D

(Ky)
y = 0,

where Kx (resp. Ky) is the number of levels required to reduce
the width (resp. height) to 1. As can be seen in Fig. 1, the final
output of D(0) does not include the original pixel value at each
location. Blelloch calls this output a prescan. We can include
the original input value by outputting one extra term and re-
indexing the final output to be D

′(0)
x (x, y) = D

(0)
x (x + 1, y)

(resp. D
′(0)
y = D

(0)
y (x, y+1)). This re-indexing is incorporated

into the final pass of the rendering, so that the extra 0 at the
beginning of the last level is never output. The x up-sweep is
initialized with U

(0)
x = I , the input image, and the y up-sweep

is initialized with U
(0)
y = D

′(0)
x , the output of the row sums.

The whole algorithm requires approximately 10N reads, 4N
EPAs, and 6N writes to compute the sums in both directions.
The even-odd conditional prevents half the fragment shaders
from doing useful work during the down-sweep, giving an
effective cost of 6N EPAs. However, benchmarks showed that
this approach was slightly faster than rendering the even and
odd pixels into separate quadrilaterals and then using more
complicated texture addressing to look up the correct value
in the next pass. The total cost of this algorithm is much
greater than the naive 1D parallelization, but cache locality is
very good. During the up-sweep, all of the texels in every 2D
block referenced are used by neighboring fragments. During
the down sweep, only half of each U (k) block is used, but
each pixel of D(k+1) is used twice. However, it is possible
to reduce the memory bandwidth even further by computing
the sums for both directions simultaneously. We now derive a
novel algorithm for doing so.

3) Novel 2D Parallelization: The basic process is an exten-
sion of Blelloch’s two-phase algorithm to operate on multiple
dimensions simultaneously. However, the down sweep requires
additional auxiliary sums, since the difference between two
adjacent pixels now contains the sum of an entire row or
column, not just a single pixel value. These auxiliary sums
can still be computed in less time than it takes to do two

b c d eU (0)

U (1) e . . . f

U (2) a . . . d

a f

a . . . b c . . . d

(a) Up-sweep

a . . . d

a . . . b e . . . f

a c e

D(0) 0 a a . . . b a . . . c a . . . d a . . . e a . . . f

D(1) 0 a . . . b a . . . d

D(2) 0 a . . . d

a . . . f

D(3) 0

(b) Down-sweep

Fig. 1. The two phases of Blelloch’s parallel prefix sum algorithm for a single
row or column [10]. The sum output at each pixel location does not include
the original input value at that location, so one more value must be output than
input. The size of each level of the down sweep is half that of the previous
level, rounded up. The size of the corresponding level of the up-sweep is
always one less than that of the down-sweep.

applications of Blelloch’s original algorithm.
The new up-sweep simultaneously constructs three pyra-

mids, U (k), H(k), and V (k), using MRT, defined by

U (k)(x, y) = U (k−1)(2x, 2y)

+ U (k−1)(2x + 1, 2y)

+ U (k−1)(2x, 2y + 1)

+ U (k−1)(2x + 1, 2y + 1) ,

(7)

H(k)(x, y) = U (k−1)(2x, 2y) + U (k−1)(2x + 1, 2y) , (8)

V (k)(x, y) = U (k−1)(2x, 2y) + U (k−1)(2x, 2y + 1) . (9)

Both the width and height are reduced by a factor of two
at each level, so this requires 4N/3 reads, N EPAs2, and N
writes for the entire up-sweep.

The two half-sums H(k) and V (k) are used to compute the
row and column sums at the even locations:

X(k)(x, y) =
x−1∑
i=0

H(k)(i, y) , (10)

Y (k)(x, y) =
y−1∑
j=0

V (k)(x, j) . (11)

X(k)(x, y) and Y (k)(x, y) do not include the original value
of H(k)(x, y) or V (k)(x, y) in their sum and thus correspond
to one of Blelloch’s prescans. Hence we can simply use the
approach outlined in Section III-A.2 to compute them, without

2We only use one EPA per output, regardless of how many terms appear
in the sum. Intermediate results are computed using ordinary vector addition
with no observed accuracy loss.

U(4)
H(4)

V (4)

U (0)

V (2)

U (2)

U (1)

H(2)

U (3)

H(3)

V (3)

V (1)

H(1)

Fig. 2. The up-sweeps for our proposed 2D parallel prefix sum algorithm. The
down-sweeps are constructed similarly, with the arrows reversed.

TABLE I
INTEGRAL IMAGE ALGORITHM EFFICIENCY.

Algorithm Reads Cache
Efficiency

EPAs (effective) Writes Real
Speed-up

1D Ping-Pong 4N 12.5% 2N (2N) 4N 1.00
2D Blelloch 10N 100.0% 4N (6N) 6N 3.89
2D Proposed 7.67N 109.5% 3.33N (4.33N) 4.33N 4.63

the indexing adjustments required to produce a full scan. We
will never need X(0) or Y (0), so this computation starts off
already one quarter the size of the original image. The total
work required to compute X(k) and Y (k) at all the remaining
levels is 10N/3 reads, 4N/3 EPAs, and 2N writes.

Given these inputs, we can define the main down-sweep:

D(k)(x, y) =

D(k+1)(bx
2 c, b

y
2 c), x even, y even,

D(k+1)(bx
2 c, b

y
2 c)

+ Y (k+1)(bx
2 c, b

y
2 c), x odd, y even,

D(k+1)(bx
2 c, b

y
2 c)

+ X(k+1)(bx
2 c, b

y
2 c), x even, y odd,

D(k+1)(bx
2 c, b

y
2 c)

+ X(k+1)(bx
2 c, b

y
2 c)

+ Y (k+1)(bx
2 c, b

y
2 c)

+ U (k)(x− 1, y − 1), x odd, y odd.

(12)

The entire down sweep requires 3N reads, N EPAs, and 4N/3
writes, giving grand totals of of 23N/3 reads, 10N/3 EPAs,
and 13N/3 writes. This represents reductions from the method
of Section III-A.2 of 23%, 17%, and 28%, respectively, while
preserving its good cache locality properties. Extending this
new algorithm to higher dimensions is straightforward.

Table I gives a summary of the computational costs of
each of the algorithms for computing the integral image. The
effective number of EPAs (in parentheses) takes into account
the fact that some fragment shaders will be idle while an
EPA is being performed for neighboring pixels due to GPU
limitations on branching. The cache efficiency is computed as

the total number of reads divided by the total number of pixels
loaded into texture cache, assuming the cache consists of 8×8
blocks and re-use by nearby pixels is ideal. The speed-up over
the 1D ping-pong method was measured at 1280× 1024.

Pixel re-use will obviously not be ideal at the top of the
pyramid, where there may be fewer nearby pixels than the size
of a texture block. As pointed out by [11], it is also inefficient
to use numerous passes on a small number of pixels, since
there may be fewer fragments to render than fragment shaders,
and setting up each pass involves additional overhead. Hence
when the total size of U (k) falls below a threshold T0, we
switch to a simpler but asymptotically less efficient algorithm
based on [12] to compute D(k). This is a ping-pong method,
computing an output T (j+1) from an input T (j) via the relation

T (j+1)(x, y) =

T (j)(x− d, y − d)
+ T (j)(x, y − d)
+ T (j)(x− d, y)
+ T (j)(x, y), x ≥ d, y ≥ d,

T (j)(x− d, y)
+ T (j)(x, y), x ≥ d, y < d,

T (j)(x, y − d)
+ T (j)(x, y), x < d, y ≥ d,

T (j)(x, y), x < d, y < d ,

(13)

where d = 2j . T (0) is initialized to U (k) and J total iterations
are performed, where J is chosen so that 2J is at least as
large as the larger dimension of U (k). The output D(k) is
constructed from T (J) by prepending a row and column of
zeros. A threshold around T0 = 8192 pixels gives the optimal
running time. Unlike [11], we find no benefit to using a similar
optimization with Blelloch’s original algorithm, because we
are applying it to so many rows (resp. columns) in parallel.

B. Feature Detection

Having constructed the integral image, we turn to the
evaluation of the box filters used to locate interest points. The
original SURF paper [1] does not give a precise specification
of the shape of the box filters to use after the first scale,
and some of the details of how the scales are sampled are
ambiguous. We have elected to use a slightly modified scheme
which is more regular and simplifies the subsequent location
of local maxima and pixel interpolation.

Like Bay et al. [1], we use filters of size 9, 15, and 21
at the first three scales. The precise layout of the box filters
is governed by four parameters Q1, . . . , Q4, as illustrated in
Fig. 3. Table II gives the values we use for these parameters.
These are the same as used by Bay et al. at the first scale.
They did not specify exact values at the remaining scales,
so we have chosen our values in a manner that simplifies
some of the optimizations introduced below. Bay et al. derive
their size 9 filters as the best box-filter approximation of the
second-order derivatives of a Gaussian with scale σ = 1.2 and
compute the scale associated with the rest of the filters based
on the ratio of their size to that of the base filter. However,

−21 1 Q2

Q1Q1Q1

(a) Gxx

1 −1

−1 1

Q3 Q4 Q3

Q3

Q4

Q3

(b) Gxy

1

1

−2

Q2

Q1

Q1

Q1

(c) Gyy

Fig. 3. Box filters approximating 2nd-order partial derivatives of a Gaussian.

TABLE II
BOX FILTER PARAMETERS FOR THE FIRST THREE SCALES.

Filter Size Q1 Q2 Q3 Q4 σ

9 3 5 3 1 1.593
15 5 9 5 1 2.700
21 7 11 7 1 3.680

the real question one should ask is, what is the scale of a
feature that will respond to a given box filter? We compute
the best σ for a set of box filters by optimizing the sum of the
correlation coefficients between the box filters and their ideal
Gaussian counterparts, yielding the values in Table II. These
differ significantly from the values given by Bay et al., but put
scale estimates between images on a sounder basis.

After reaching a filter size of 27, Bay et al. begin incre-
menting by 12, for several steps, then 24, etc., simultaneously
doubling the sampling interval at which filter responses are
computed each time the filter step size doubles. Instead, we
generate all successive levels by scaling the parameters for
the first three filters by a power of three. The estimated
σ values and the sampling interval are scaled as well, so
that each successive triplet of scales considers 1

9 as many
pixels. This samples features more uniformly in log-scale
space and makes it much easier to manage the transitions
between sampling interval sizes. Factors of three are used
instead of factors of two in order to keep all of the filter
parameters odd, ensuring that we can always sample them
at integer locations. This change means that we use fewer
samples than Bay et al. at higher scales. Whereas they
use box filter sizes of {9, 15, 21, 27, 39, 51, 63, . . .}3, we use
{9, 15, 21, 27, 45, 63, . . .}, i.e., one less scale to cover the same
range. While we have not investigated the exact effect on
accuracy of sampling fewer scales at fewer points, we expect
it to be small, while enabling a large reduction in computation.

1) Box Filter Optimization: Calculating box filter responses
to approximate the Hessian determinant is quite expensive,
especially at the first three scales, since they are sampled at
every pixel in the image. All of the remaining scales combined
require a fraction of the time those do. A straightforward
implementation involves 32 distinct lookups per pixel, or
over 126 million lookups for the lowest three scales of a
1280× 1024 image. This takes over 120 ms by itself.

3Presumably. The exact transition point to increments of 24 is unclear from
the original paper, but probably occurs after size 63.

In order to overcome this bottleneck we use a multi-pass
approach that takes advantage of the fact that many of the
intermediate values are differences between two values in the
integral image separated by a small set of common distances.
Some of these differences will also be used by nearby pixels.
Thus by computing them once and sharing them, the total
required memory bandwidth is reduced. Let us define some
expressions for these differences around a point (x, y):

δn
x = II

(
x +

n− 1
2

, y

)
− II

(
x− n + 1

2
, y

)
(14)

δn×m = δn
x

(
x, y +

m− 1
2

)
− δn

x

(
x, y − m + 1

2

)
(15)

From these we can construct the following multi-pass algo-
rithm for the first scale:

• Pass 1: Compute δ3
x and δ5

x (4 lookups).
• Pass 2: Compute δ3×3, δ3×5, and δ5×3 from the output

of pass 1 (4 lookups).
• Pass 3: Compute the full box filter responses G9

xx, G9
xy ,

and G9
yy from the output of pass 2, and the resulting

Hessian determinant, H9 (9 lookups).
This reduces the total number of texture lookups for a single
scale from 32 to 17, or a savings of 47%, which is almost
exactly the reduction in observed running time.

We can eliminate even more common sub-expressions by
considering the first three scales simultaneously. These involve
regions of size 3× 3, 3× 5, 5× 3, 5× 5, 5× 9, 7× 7, 7× 11,
9×5, and 11×7. Unfortunately, there are nine such region sizes
involving five different lengths. MRT only supports writing to
multiple textures of the same format—limiting us to a multiple
of 1, 2, or 4—and can only write to four textures at a time on
7 Series cards, meaning the closest we can come to 9 outputs
is 8 or 12. Therefore we will have to be more clever in how we
split up intermediate computations between passes. We define
two additional difference terms:

∆n×m
x = δn×m

(
x + n+1

2 , y
)
− δn×m

(
x− n+1

2 , y
)

(16)

∆n×m
y = δn

x (x, y + m) + δn
x (x, y − 1)

− δn
x (x, y)− δn

x (x, y −m− 1)
(17)

Armed with these, we construct the five-pass algorithm out-
lined in Table III. This requires only 40 lookups to compute
the Hessian determinants of three scales simultaneously, or
a 22% savings over computing them individually. Improved
cache locality yields a 55% better run time, for a total savings
of 77% over the straightforward algorithm. In addition, only
three temporary textures, T0, T1, and T2 are needed, and all
three outputs wind up in the same texture, greatly reducing
the number of lookups needed for the next step.

2) Non-max Suppression and Sub-pixel Interpolation: Once
the Hessian determinant values have been computed for a
triplet of scales, local maxima over a given threshold become
interest points. Using two passes, one for x and one for y,
we construct a texture with the local maximum of all three
scales in a 3× 3 window, using the sign bit to store whether
the value at that location was itself the local maximum. In

TABLE III
MULTI-PASS BOX FILTER OUTPUTS FOR THE FIRST THREE SCALES.

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Inputs II T0 T1 T2 T0, T1

Lookups 8 12 5 7 8
Outputs T0 T1 T2 T0 T1 T2

R δ3
x ∆3×3

y δ5×9 H9 G15
xx H9

G δ5
x δ3×5 δ7×7 G15

xy G21
xx H15

B δ7
x G9

yy δ7×11 δ9×5 ∆7×7
x H21

A δ11
x ∆5×5

y δ11×7 — δ11×7 —

addition, a local average of the 3 × 3 group of values from
the highest scale is stored in the fourth channel, which will be
used during sub-pixel interpolation. Several rounds of Early Z
Culling [13] are then used to perform inter-scale suppression.

Each round renders a quadrilateral at a progressively greater
depth, and the pixels that pass the round are “discarded” by the
fragment program, preventing their depth values from being
written; no color values are written. Normally using discard
disables Early Z, but we have found that enabling OpenGL’s
EXT depth bounds test extension prevents this. Conceptually
we appear to be writing a depth value for almost every pixel
every round, but the GPU’s hierarchical Z-buffer absorbs
most of this cost. Each pass after the first takes just a few
microseconds. One could use the stencil buffer instead, but
this has driver issues at the time of this writing.

The first round passes a fragment if its local maximum
across the three scales is larger than the threshold. The second
round addresses the cases where the lower scale or the upper
scale was the local maximum. In the first case, we compare
against the maximum over a 9 × 9 area from the previous
scale by looking up nine 3 × 3 maxima. In the second case,
we look up nine Hessian determinants from the scale above
and bilinearly interpolate the corresponding 3 × 3 region of
the current scale. Because the 7 Series GPUs do not support
bilinear interpolation of 32-bit float textures, this interpolation
must be done manually. However, because the number of
feature points is very small, this is extremely quick.

A final pass computes the sub-pixel location of the remain-
ing feature points using (2). If the feature is at the first scale
in a triplet, we use the local 3 × 3 average from the scale
below when computing finite differences. If the feature is at
the third scale, we use bilinearly interpolated values from the
scale above. We currently accumulate feature locations from
all three scales into the same texture. If the first and third scale
are both local maxima, only the latter becomes a feature.

3) Point List Generation: Once the sub-pixel interpolation
is complete, the coordinates of the interest points are extracted
from the image and assembled into a list using the vec4 variant
of Ziegler et al.’s HistoPyramid algorithm [14]. This algorithm
reads back a single pixel value to determine the total number
of features; this is the only read-back we perform before
retrieving the final feature vectors. Unlike Ziegler et al., we
use a one-dimensional texture to store the list of features, since
many of our subsequent steps will use an entire row of pixels

per feature. This limits the total number of features detected
in the frame to 4096, which should be more than sufficient.

C. Haar Responses

Both orientation detection and feature descriptor construc-
tion require computing hundreds of Haar filters. Because
feature locations are sub-pixel accurate and the scale values are
not integers, the integral image must be sampled at non-integer
locations. This interpolation must be done manually, and a
naive implementation requires four integral image lookups:

II(x + ∆x, y + ∆y) = (1−∆y)(1−∆x)II(x, y)
+ (1−∆y)∆xII(x + 1, y)
+ ∆y(1−∆x)II(x, y + 1)
+ ∆y∆xII(x + 1, y + 1) ,

(18)

where ∆x,∆y ∈ [0, 1]. Since we have the original image value
in the fourth component of the integral image, we can reduce
this to three lookups by noting that

II(x, y) = II(x + 1, y) + II(x, y + 1)
+ I(x + 1, y + 1)− II(x + 1, y + 1) .

(19)

However, with some pre-computation, this can be reduced even
further. Let R(x, y) and C(x, y) be defined as the sum of a
single row or column originating at pixel (x, y):

R(x, y) =
x∑

i=0

I(i, y) , C(x, y) =
y∑

j=0

I(x, j) (20)

These sums are trivial to compute from II and can be packed
into two components instead of three, since they cover at most
4096 pixels. We store them both in a single four-component
texture and use the relations

II(x + 1, y) = II(x + 1, y + 1)−R(x + 1, y + 1) (21)
II(x, y + 1) = II(x + 1, y + 1)− C(x + 1, y + 1) (22)

to compute a sub-pixel accurate value with just two lookups.
It may be surprising that this approach provides any appre-

ciable speed-up, since all the values of II required are right
next to each other, and one might reasonably expect them
to be available in the texture cache, while computing the R-
C texture requires three extra lookups per pixel. However,
when computing Haar responses, the sampling locations are
no longer aligned to a regular grid and are spaced far apart
at higher scales. The 7 Series fragment shaders use a SIMD
architecture on 2×2 “quads” of pixels, so a texture cache miss
in any pixel in a quad will stall the entire quad. When data is
accessed in an irregular pattern, the probability of two adjacent
lookups crossing a cache block boundary is independent for
each pixel. Even though this probability is only 12.5% for one
pair of adjacent lookups, when doing two adjacent lookups
in all four pixels in a quad, the probability that at least one
of them will cross a cache block boundary grows to 65.6%.
Depending on how groups of these quads are scheduled for
execution—NVIDIA has indicated that branching on the 7 Se-
ries operates at a granularity of over 200 pixels, for example—
the real probability may be much higher. There is also a chance

6s

6s

(a) Lattice Points

−1

−1

1

1

4s

(b) Haar filters

Fig. 4. The setup used to calculate feature orientation. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to estimate local
orientation. The gray dot is the lattice point about which the filter is sampled.

that high texture cache pressure evicts the block containing the
first pixel before the adjacent ones are referenced. In contrast,
the R-C texture is computed on a regular grid, making efficient
use of the texture cache. Measurements confirm that the two-
lookup approach requires 33% less time than the three-lookup
approach, greatly outweighing the extra cost of computing the
R-C texture for moderate feature counts. With this approach,
evaluating arbitrarily-sized sub-pixel Haar responses in both
the x and y directions requires just 16 lookups.

D. Orientation Detection

The Haar responses used to find the dominant orientation of
a feature are sampled at the 113 lattice points inside a circle of
radius 6, scaled and offset by the feature scale and location, as
illustrated in Fig. 4. The results are stored in a single texture
row corresponding to that feature. We tested two methods of
generating the lattice point locations from the target rendering
location in the row. The first uses a simple mapping from the
1D column index into a 2D square, followed by Early Z to
mask out the points that lie outside the circle. The second
converts the points inside the circle into a series of scan lines
where each point has the same y coordinate and then renders
one quadrilateral per scan line, using texture coordinates to
specify the x coordinates. This latter method tested to be over
20% faster than using Early Z. Another alternative we did not
test is simply using a 1D lookup texture.

Given the Haar response vectors, the CPU algorithm sorts
them by angle and uses a sliding window to extract the domi-
nant orientation. Sorting on the GPU is notoriously slow, with
even the best parallel algorithms still comparable to a good
serial algorithm on the CPU [15]. Instead we approximate the
sort using a 256-bin histogram. This is constructed with the
Render to Vertex Buffer (R2VB) scattering algorithm proposed
in [16]. Instead of accumulating a count of the vectors that fall
in each bin, we accumulate the vectors themselves using alpha
blending, so there is no loss in angular resolution. The 7 Series

5s

5s

5s

5s

20s

θ

(a) Lattice Points

1−1

2s

−1

1

− cos(θ)
− sin(θ)

cos(θ)
− sin(θ)

− cos(θ)
+ sin(θ)

cos(θ)
+ sin(θ)

sin(θ)
− cos(θ)

− sin(θ)
− cos(θ)

sin(θ)
+ cos(θ)

− sin(θ)
+ cos(θ)

(b) Haar filters

Fig. 5. The setup used to calculate a feature vector. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to compute the
feature vector values. The responses from the two axis-aligned filters at the
top are rotated to effectively achieve the pair of filters at the bottom.

GPUs cannot perform alpha blending on 32-bit floating point
textures, so this step is limited to 16 bits of precision.

Once the vectors are assigned to histogram bins, we com-
pute a cumulative histogram using Blelloch’s parallel prefix
sum algorithm from Section III-A.2. Additionally, since all
of these vectors have only two components, we can pack
the values from two rows into a single texel and use the
GPU’s four-wide vector operators to process both rows at once.
Armed with this cumulative histogram, we can now compute
the sum over the sliding window with just two or three
lookups. Another up-sweep-like reduction is used to find the
vector sum with the maximum magnitude, and its orientation
is assigned to the corresponding feature. The approximations
made in this approach do not impair the accuracy, yielding an
RMS error of 0.20 degrees compared to the CPU algorithm.

E. Feature Vector Calculation

To construct the feature vectors, axis-aligned Haar responses
are computed on a 20s× 20s grid, as illustrated in Figure 5.
The lattice points of the grid are aligned with the feature
orientation, and the Haar response vector is rotated by this
angle as well. Each row of the output texture is used to store
a single feature vector, with every texel value containing the
four elements of v. Normalization is done on the GPU using
another simple reduction to compute the vector magnitude.

IV. RESULTS

We ran our implementation on a GeForce Go 7950 GTX and
a GeForce 8800 GTX using images provided by Mikolajczyk4

as well as several downscaled versions of the frac.pgm
image included with SiftGPU [4]. Fig. 6 plots the average

4http://www.robots.ox.ac.uk/˜vgg/research/affine/

320´240 640´480 880´680 1280´960 2048´1536

15 Hz

30 Hz

45 Hz

60 Hz

75 Hz

90 Hz

M � 100

M � 250

M � 500

M � 1000

M � 2500

(a) GeForce Go 7950 GTX

320´240 640´480 880´680 1280´960 2048´1536

30 Hz

60 Hz

90 Hz

120 Hz

150 Hz

180 Hz

M � 100

M � 250

M � 500

M � 1000

M � 2500

(b) GeForce 8800 GTX

Fig. 6. Benchmarking results for two GPUs. Isolines for several fixed values
of the feature count, M , are interpolated from the measured sample data.

(a) Image 1 (b) Image 2

(c) Reconstructed panorama, RMS reprojection error = 0.64 pixels

Fig. 7. An example panorama created by matching our SURF features and
estimating a homographic projection between images. In this case, 82% of
the matches produced by SURF were retained as inliers after RANSAC.

speed of each 10 second run, using thresholds of 1, 1
2 , and

1
4 for H0. Our times do not include the time to transfer the
image to the graphics card, since this only affects latency, not
throughput. On average, we observed the 8800 to be 3.6 times
faster than the mobile 7950, even though we performed no
specific optimization for it, confining all of our development
to 7 Series cards. By comparison, at 640× 480 SiftGPU runs
at 13 Hz on an 8800, and [5] runs at 20 Hz on a QuadroFX
3400. They do not report resulting feature counts, but even at
the lowest threshold we tested, we are 3.6 to 5.5 times faster.
Although we did not conduct a formal quality comparison with
the original SURF algorithm, we achieved very good matching
results in our informal testing, as Fig. 7 illustrates.

V. CONCLUSION

We have presented a GPU implementation of the SURF
feature extraction algorithm that achieves interactive frame

rates all the way up to HD resolutions, and at SD resolutions
on a laptop card. This gives a host of computer vision
algorithms the potential to run in real time. In the future, we
plan to use new GPGPU APIs such as CUDA or CTM to
avoid the graphics pipeline completely, providing additional
speedup.

ACKNOWLEDGMENT

The authors would like to thank Jared Kresge and Maj.
Michael Veth of the Air Force Institute of Technology for
their assistance in performance testing.

REFERENCES

[1] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust
features,” in Proc. of the 9th European Conference on Computer Vision
(ECCV’06), ser. Lecture Notes in Computer Science, A. Leonardis,
H. Bischof, and A. Pinz, Eds., vol. 3951. Graz, Austria: Springer-
Verlag, May 2006, pp. 404–417.

[2] M. Veth and J. Raquet, “Fusing low-cost image and inertial sensors for
passive navigation,” Journal of the Institute of Navigation, vol. 54, no. 1,
pp. 11–20, 2007.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
Nov. 2004.

[4] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video
feature tracking and matching,” in Proc. of the 2006 Workshop on Edge
computing Using New Commodity Architectures (EDGE), Chapel Hill,
NC, May 2006.

[5] S. Heymann, K. Müller, A. Smolic, B. Fröhlich, and T. Wiegand, “SIFT
implementation and optimization for general purpose GPU,” in Proc.
of the 15th International Conference in Central Europe on Computer
Graphics, Visualization, and Computer Vision (WSCG’07), Plzen, Czech
Republic, Jan. 2007, pp. 317–322.

[6] M. Brown and D. G. Lowe, “Invariant features from interest point
groups,” in Proc. of the 13th British Machine Vision Conference
(BMVC’02), Cardiff, Wales, Sept. 2002, pp. 253–262.

[7] N. K. Govindaraju, E. S. Larsen, J. Gray, and D. Manocha, “A memory
model for scientific algorithms on graphics processors,” in Proc. of the
ACM/IEEE Conference on Supercomputing (SC’06), no. 89. Tampa,
FL: ACM Press, Nov. 2006.

[8] F. Zhou and P. Kornerup, “Computing moments by prefix sums,” in Proc.
of the IEEE International Conference on Image Processing (ICIP’96),
vol. 3, Lausanne, Switzerland, Sept. 1996, pp. 619–622.

[9] J. L. T. Cornwall, “Efficient multiple pass, multiple output algorithms
on the GPU,” in Proc. of the 2nd European Conference on Visual Media
Production (CVMP’05), London, UK, Dec. 2005, pp. 253–262.

[10] G. E. Blelloch, “Prefix sums and their applications,” Carnegie Mellon
University School of Computer Science, Tech. Rep. CMU-CS-90-190,
Nov. 1990.

[11] S. Sengupta, A. E. Lefohn, and J. D. Owens, “A work-efficient step-
efficient prefix-sum algorithm,” in Proc. of the 2006 Workshop on Edge
Computing Using New Commodity Architectures, Chapel Hill, NC, May
2006, pp. D–26–27.

[12] D. Horn, GPU Gems 2. Addison Wesley, Mar. 2005, ch. 36, Stream
Reduction Operations for GPGPU Applications, pp. 573–589.

[13] P. V. Sander, J. R. Isidoro, and J. L. Mitchell, Course Notes for ACM
SIGGRAPH 2005 Course 37, 2005, ch. 10. Computation Culling with
Explicit Early-Z and Dynamic Flow Control.

[14] G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel, “On-the-fly point
clouds through histogram pyramids,” in Proc. of the 11th Interna-
tional Fall Workshop on Vision, Modeling, and Visualization (VMV’06),
Aachen, Germany, Nov. 2006, pp. 137–144.

[15] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort:
High performance graphics co-processor sorting for large database
management,” in Proc. of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’06). Chicago, IL: ACM Press, June
2006, pp. 325–336.

[16] T. Scheuermann and J. Hensley, “Efficient histogram generation using
scattering on GPUs,” in Proc. of the 2007 Symposium on Interactive 3D
Graphics and Games (I3D’07), Seattle, WA, Apr. 2007, pp. 33–37.

